Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 


Тождественные преобразования




· Свободно оперировать понятиями степени с целым и дробным показателем;

· выполнять доказательство свойств степени с целыми и дробными показателями;

· оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;

· свободно владеть приемами преобразования целых и дробно-рациональных выражений;

· выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приемов;

· использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трехчлена и для решения задач, в том числе задач с параметрами на основе квадратного трехчлена;

· выполнять деление многочлена на многочлен с остатком;

· доказывать свойства квадратных корней и корней степени n;

· выполнять преобразования выражений, содержащих квадратные корни, корни степени n;

· свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;

· выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

· выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;

· выполнять преобразования рациональных выражений при решении задач других учебных предметов;

· выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей.

Уравнения и неравенства

· Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

· решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;

· знать теорему Виета для уравнений степени выше второй;

· понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

· владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

· использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

· решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

· владеть разными методами доказательства неравенств;

· решать уравнения в целых числах;

· изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

· составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

· выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;

· составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

· составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты.

Функции

· Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, четность/нечетность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,

· строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;

· использовать преобразования графика функции для построения графиков функций ;

· анализировать свойства функций и вид графика в зависимости от параметров;

· свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;

· использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;

· исследовать последовательности, заданные рекуррентно;

· решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

· конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;

· использовать графики зависимостей для исследования реальных процессов и явлений;

· конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 856 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2474 - | 2394 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.