Силовой трансформатор — стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему переменного напряжения и тока, как правило, различных значений при той же частоте в целях безопасной электроэнергии без изменения её передаваемой мощности.[1][2]
Также силовым трансформатором называют трансформатор, входящий в состав вторичных источников электропитания различных устройств и аппаратуры, обеспечивающий их питание от электросети, независимо от его мощности (вплоть до единиц Вт).
Силовые трансформаторы предназначены для преобразования электроэнергии переменного тока с одного напряжения на другое. Наибольшее распространение получили трехфазные трансформаторы, так как потери в них на 12-15 % ниже, а расход активных материалов и стоимость на 20-25 % меньше, чем в группе однофазных трансформаторов такой же суммарной мощности.
Предельная единичная мощность трансформаторов ограничивается массой, размерами, условиями транспортировки.
Трехфазные трансформаторы на напряжение 220 кВ изготовляют мощностью до 1000 МВ∙А, на 330 кВ – 1250 МВ∙А, на 500 кВ – 1000 МВ∙А.
Однофазные трансформаторы применяются, если невозможно изготовление трехфазных трансформаторов необходимой мощности или затруднена их транспортировка. Наибольшая мощность группы однофазных трансформаторов напряжением 500 кВ составляет 3×533 МВ∙А, напряжением 750 кВ - 3×417 МВ∙А, напряжением 1150 кВ - 3×667 МВ∙А.
По количеству обмоток различного напряжения на каждую фазу трансформаторы разделяют на двухобмоточные и трехобмоточные. Кроме того, обмотки одного и того же напряжения, обычно низшего, могут состоять из двух или более параллельных ветвей, изолированных друг от друга и от заземленных частей. Такие трансформаторы называют трансформаторами с расщепленными обмотками. Обмотки высшего, среднего и низшего напряжения принято сокращенно обозначать соответственно ВН, СН, НН. Трансформаторы с расщепленными обмотками обеспечивают возможность присоединения нескольких генераторов к одному повышающему трансформатору. Такие укрупненные энергоблоки позволяют упростить схему распределительного устройства (РУ) 330-500 кВ. Трансформаторы с расщепленной обмоткой НН получили широкое распространение в схемах питания собственных нужд крупных ТЭС с блоками 200-1200 МВт, а также на понижающих подстанциях с целью ограничения токов КЗ.
К основным параметрам трансформатора относятся: номинальные мощность, напряжение, ток; напряжение КЗ; ток холостого хода; потери холостого хода и КЗ.
Правильный выбор числа и мощности трансформаторов на подстанциях промышленных предприятий является одним из важных вопросов электроснабжения и построения рациональных сетей. В нормальных условиях трансформаторы должны обеспечивать питание всех потребителей предприятия при их номинальной нагрузке.
Число трансформаторов на подстанции определяется требованием надёжности электроснабжения. С таким подходом наилучшим является вариант с установкой двух трансформаторов, обеспечивающий бесперебойное электроснабжение потребителей цеха любых категорий. Однако если в цехе установлены приёмники только II и III категории, то более экономичными, обычно, являются однотрансформаторные подстанции.
При проектировании внутризаводских сетей установка однотрансформаторных подстанций выполняется в том случае, когда обеспечивается резервирование потребителей по сети низкого напряжения, а также когда возможна замена повреждённого трансформатора в течение нормируемого времени.
Рис. 1 Схемы электроснабжения цеха с одним (а), и двумя (б) трансформаторами
Двухтрансформаторные подстанции применяются при значительном числе потребителей II категории, либо при наличии потребителей I категории. Кроме того, двухтрансформаторные подстанции целесообразны при неравномерном суточном и годовом графике нагрузки предприятия, при сезонном режиме работы при значительной разницей нагрузки в сменах. Тогда при снижении нагрузки один из трансформаторов отключается.
Задача выбора количества трансформаторов заключается в том, чтобы из двух вариантов (рис. 1 а и б) выбрать вариант с лучшими технико-экономическими показателями. Оптимальный вариант схемы электроснабжения выбирается на основе сравнения приведённых годовых затрат по каждому варианту:
13. Автотрансформаторы их особенности конструкции и режимы работы.
К особенностям конструкции автотрансформаторов следует отнести необходимость глухого заземления нейтрали, общей для обмоток ВН и СН. Объясняется это следующим. Если в системе с эффективно заземленной нейтралью включить понижающий автотрансформатор с незаземленной нейтралью, то при замыкании на землю одной фазы в сети СН на последовательную обмотку этой фазы будет воздействовать полное напряжение U BÖ`3 вместо (U B– U C)/Ö`3, напряжение выводов обмотки СН возрастет примерно до U B, резко увеличится напряжение, приложенное к обмоткам неповрежденных фаз. Аналогичная картина наблюдается в случае присоединения повышающего автотрансформатора с незаземленной нейтралью к системе с эффективно заземленной нейтралью.
Такие перенапряжения недопустимы, поэтому нейтрали всех автотрансформаторов глухо заземляются. В этом случае заземления на линии со стороны ВН или СН не вызывают опасных перенапряжений, однако в системах ВН и СН возрастают токи однофазного КЗ.
Подводя итог всему сказанному, можно отметить следующие преимущества автотрансформаторов по сравнению с трансформаторами той же мощности:
меньший расход меди, стали, изоляционных материалов;
меньшая масса, а следовательно, меньшие габариты, что позволяет создавать автотрансформаторы больших номинальных мощностей, чем трансформаторы;
меньшие потери и больший КПД;
более легкие условия охлаждения.
Недостатки автотрансформаторов:
· необходимость глухого заземления нейтрали, что приводит к увеличению токов однофазного КЗ;
· сложность регулирования напряжения;
· опасность перехода атмосферных перенапряжений вследствие электрической связи обмоток ВН и СН.
втотрансформаторы работают в таких режимах, как:
- трансформаторный;
- автотрансформаторный;
- комбинированный.
При нормальном режиме работы автотрансформатор, может работать долгое время без перегревов и неисправностей. Для этого нужно соблюдать все требования по условиям эксплуатации и следить за тем, чтобы верхние слои масла не нагревались до температуры свыше 75°С.