, γ- , .
Iγ - h - qγ, qγ (qγ > qγ ), dc, . , (.7, ). - , , h≥ 1 :
(7)
. Iγ ½ ∆Iγ Iγ . , , .
(.7, ) - : , ; , , τ = RC. τ Iγ , , . . , υ τ (.7, ). υ τ ( υτ) , , . υτ, ∆Iγ ∆Iγ∞ h h . ∆Iγ ∆Iγ∞
νγ = ∆Iγ/∆Iγ∞ (8)
.7. . .
. τmax τmin
. τ , Iγ. , Iγ :
|
|
1. ( );
2. ∆Iγ νγ:
∆Iγ∞ = ∆Iγ / νγ (9)
νγ .8.
Iγ . - ,
=S/∆Iγ∞ (10)
S , Iγ, Iγ ;
∆Iγ∞ .
.8. νγ h
υτ=const
- Iγ - Iγ, Iγ, Iγ Iγ
Iγ = Iγ + Iγ + Iγ + Iγ (11)
( , , ), (11) Iγ , qγ . (11)
Iγ = Iγ + c (12)
c = const.
, Iγ + Iγ Iγ + Iγ , ( ) . , , - . (11) (12), , , , ηd, η, η, , , . . ηγ Iγ (, , , , ) Iγ
ηγ= Iγ / Iγ (13)
, ηγ , , :
ηγ = η η η (14)
. 9, 10 ηγ η dc ( ), ∆ . , - n= qγ / qγ n' = qγ /qγ . , , , (ηγ> 1), (ηγ < 1).
|
|
ηγ , dc = 0 dc = d . (11) (12), Iγ + Iγ + Iγ = const .
, Iγ, .
1. h, .
2. Iγ , Iγ.
3. ∆ Iγ = Iγ - Iγ νγ h, υ, τ .8, . νγ, ∆Iγ∞ = ∆Iγ / νγ
4. ηγ, .9 n, dc, δ, d, hk, h . Iγ∞, ,
(15)
Iγ∞ , , ηγ η, η, η..
.9. ηγ = f(dc) | .10 η = f(∆) , |
- Iγ qγ, k k , qγ .