Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Характеристика критеріїв обґрунтування ГР в умовах ризику




Правило (критерій) Характеристика
Правило Байєса (критерій математичного сподівання) Ґрунтується на припущенні, що відомі ймовірності настання можливих станів зовнішнього середовища . Обов’язкова вимога — . Вона означає, що використано всі можливі стани природи, і інших бути не може. Критерієм вибору служить значення математичного сподівання альтернативи j. Відповідно до правила Байєса оптимальною вважається альтернатива з більшим значенням математичного сподівання, ніж в інших альтернативах
Критерій середнього значення і стандартного відхилення Для оцінки розсіювання значень критерію (обраного параметра) щодо його середнього прогнозованого значення математичного сподівання доцільно використовувати таку характеристику, як дисперсія — стандартне відхилення результатів (вартості капіталу) як ступеня ризику в критерії прийняття рішень. Чим вище стандартне відхилення, тим більший ризик. Для запобігання ризику особа, що приймає рішення, вибирає з двох альтернатив з однаковими математичними сподіваннями альтернативу з найменшим стандарт­ним відхиленням (дисперсією)
Критерій Бернуллі За обґрунтуванням Бернуллі можлива заміна значень математичних сподівань і моментів ризику цільових функцій (наприклад, вартості капіталу) на очікувану корисність (вигоду). Замість монетарних цільових функцій використовується корисність, і ОПР пов’язує її з цілями, очікуваним ступенем їх досягнення, врахуванням відношення до ризику. У цьому випадку виходять з того, що особа, яка приймає рішення, може оцінити вигоду (корисність) різ­них альтернатив і вибрати максимум «морального очікування» (МрО), розраховуючи його за формулою: , де — дегресивно зростаюча функція корисності; — вартість капіталу за і-го стану середовища; — імовірність настання і-го стану зовнішнього середовища. На відміну від критерію середнього значення та стандарт­ного відхилення у величині корисності трансформуються можливі результати. Альтернатива з максимальним значенням МС корисності є оптимальною. Якщо відношення до ризику нейтральне, цей критерій відповідає правилу Байєса
Критерій Лапласа Критерій дає змогу відокремити кращий варіант у тому випадку, якщо жодна з умов не має істотної переваги. Коли немає ніяких підстав вважати, що кожний окремий стан природи більш імовірний, порівняно з іншими, використовують припущення про те, що ймовірність виникнення кожного з можливих станів навко­лишнього середовища однакова. У такому випадку цінності кожної альтернативи можна обчислити за формулою звичайного середнього арифметичного всіх її можливих оцінок у різних станах природи. Оптимальною є та альтернатива, яка має найбільшу середню оцінку
Критерій Гурвіца (критерій песиміз­му-оптимізму) Передбачає оцінну функцію між поглядом крайнього оптимізму та крайнього песимізму. Формула розрахунку критерію показана у разі застосування правила Гурвіца в умовах невизначеності. Критерій рекомендує не керуватися ні крайнім оптимізмом, ані крайнім песимізмом, а брати деякий середній результат. Застосування критерію ускладнюється через відсутність обґрунтованого уявлення про величину параметра α — параметра впевненості інвестора щодо здобуття максимального виграшу. Критерій є дещо суб’єктивним, оскільки величина параметра оптимізму α обирається довільно від 0 до 1. За α = 1 критерій Гурвіца перетворюється в максимакс (критерій азартного гравця). За α = 0 він відповідає максіміну (критерію песимізму, чи Вальда)

 

 





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 425 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2312 - | 2018 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.