Компьютерные сети можно классифицировать по ряду признаков, в том числе по степени территориальной распределенности. При этом различают: глобальные, региональные и локальные сети.
· Локальные сети связывают абонентов одного или нескольких близлежащих зданий одного предприятия, учреждения.
· Региональные сети объединяют пользователей города, области, небольших стран. В качестве каналов связи чаще всего используются телефонные линии. Расстояния между узлами сети составляют 10-1000 км.
· Глобальныесети объединяют пользователей, расположенных по всему миру, и часто используют спутниковые каналы связи, позволяющие соединять узлы сети связи и ЭВМ, находящиеся на расстоянии от 10-ков до 10-ков тысяч км друг от друга. Глобальные сети переплетаются между собой и могут объединять сотни локальных сетей. При подключении к сети пользователь получает свое уникальное имя, а его компьютер становится сетевой станцией. Длина имени и правила его назначения строго регламентированы (стандартизованы).
Существенное отличие локальных сетей от глобальных состоит в том, что в них между двумя станциями имеется обычно только один путь доставки информации, тогда как в глобальных всегда имеются альтернативные пути. Кроме того, скорость передачи информации в локальных сетях, как правило, выше, чем в глобальных.
Сети, состоящие из программно-совместимых компьютеров, являются однородными или гомогенными. Если компьютеры, входящие в сеть, программно несовместимы, то такая сеть называется неоднородной или гетерогенной.
По типу организации передачи данных различают сети: с коммутацией каналов, с коммутацией сообщений и с коммутацией пакетов. Имеются сети, использующие смешанные системы передачи данных.
По характеру реализуемых функций сети подразделяются на:
· вычислительные, предназначенные для решения задач управления на основе вычислительной обработки исходной информации;
· информационные, предназначенные для получения справочных данных по запросу пользователей;
· смешанные, в которых реализуются вычислительные и информационные функции.
По способу управления компьютерные сети делятся на сети с децентрализованным, централизованным и смешанным управлением. В первом случае каждый компьютер, входящий в состав сети, включает полный набор программных средств для координации выполняемых сетевых операций. Сети такого типа сложны и достаточно дороги, так как операционные системы отдельных компьютеров разрабатываются с ориентацией на коллективный доступ к общему полю памяти сети. При этом в каждый конкретный момент времени доступ к общему полю памяти предоставляется только для одного компьютера. А координация работы компьютеров осуществляется под управлением единой операционной системы сети.
В условиях смешанных сетей под централизованным управлением ведется решение задач, обладающих высшим приоритетом и, как правило, связанных с обработкой больших объемов информации.
По структуре построения (топологии) сети подразделяются на одноузловые и многоузловые, одноканальные и многоканальные. Топология компьютерной сети во многом определяется структурой сети связи, то есть способом соединения абонентов друг с другом и компьютером. Известны такие структуры сетей: радиальная (звездообразная), кольцевая, многосвязная («каждый с каждым»), иерархическая (древовидная), «общая шина» и др. (рис.1).
Рис. 1 - Основные типы структур сетей ЭВМ
Где: радиальная (звездообразная) (а); кольцевая (б), многосвязная (в); иерархическая (г); «общая шина» (д)
- компьютер; ○ - узел коммутации
Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология - это стандартный термин, который используется профессионалами при описании основной компоновки сети. Кроме термина «топология», для описания физической компоновки употребляют также следующие:
· физическое расположение;
· компоновка;
· диаграмма;
· карта.
Топология сети обуславливает её характеристики. В частности, выбор той или иной топологии влияет на:
· состав необходимого сетевого оборудования;
· характеристики сетевого оборудования;
· возможности расширения сети;
· способ управления сетью.
Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве случаев используется кабель (реже - беспроводные сети - инфракрасное оборудование Input/Output).
Однако, просто подключить компьютер к кабелю, соединяющему другие компьютеры, недостаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаиморасположения компьютеров.
Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки.
Базовые топологии. Все сети строятся на основе трёх базовых топологий:
· шина (bus)
· звезда (star)
· кольцо (ring)
Если компьютеры подключены вдоль одного кабеля, топология называется шиной. В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология носит название кольца.
Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.
Рис. 2 - Простая сеть с топологией «шина».
В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов.
Данные в виде электрических сигналов передаются всем компьютерам в сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, зашифрованному в этих сигналах. Причем в каждый момент времени только один компьютер может вести передачу.
Так как данные в сеть передаются только одним компьютером, её производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, тем медленнее сеть.
При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (hub). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к главному компьютеру.
В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованы. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети.
А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать и получать сигналы. На остальные компьютеры в сети это не повлияет.
Рис. 3 - Простая сеть с топологией «звезда».
При топологии «кольцо» компьютеры подключают к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключить терминатор. Сигналы здесь передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.
Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.
Рис. 4 - Простая сеть с топологией «кольцо» и передача маркера.
Беспроводная среда постепенно входит в нашу жизнь. Словосочетание «беспроводная среда» может ввести в заблуждение, поскольку означает полное отсутствие проводов в сети. В действительности же обычно беспроводные компоненты взаимодействуют с сетью, в которой - как среда передачи - используется кабель. Такая сеть со смешанными компонентами называется гибридной.
В зависимости от технологии беспроводные сети можно разделить на три типа:
· - локальные вычислительные сети;
· - расширенные локальные вычислительные сети;
· - мобильные сети (переносные компьютеры).
Способы передачи:
· - инфракрасное излучение;
· - лазер;
· - радиопередача в узком спектре (одночастотная передача);
· - радиопередача в рассеянном спектре.
Беспроводной компьютер подключается к точке доступа.
Рис. 5 – Беспроводное подключение
Кроме этих способов передачи и получения данных можно использовать мобильные сети, пакетное радиосоединение, сотовые сети и микроволновые системы передачи данных.
Базовые топологии и их модификации лежат в основе построения локальных компьютерных сетей. Топологии крупных сетей как правило представляют собой комбинации нескольких топологических решений.