Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Системы умножения и их структурные проекции

 

Как и я сказал, мы будем охватывать всё. Поэтому раз структурные проекции – мы будем разбирать относительно каждой пространственной структуры, как она проецируется куда-то.

Ну давайте её отложим. Азъ и поставим.

 

│а│

Т.е. она у нас будет обозначать любую структуру и отображать любую проекцию. А теперь представьте: есть миры и пространства, есть миры с дробными пространствами, есть внепространственное что-то. И вот представьте, и это что-то внепространственное, оно же все равно имеет какую-то характеристику. Правильно? А как мы единое передадим вне всякого пространства? А это и будет та самая изначальная точка. Понятно, да? Хорошо, чтобы было понятней, я вам процитирую Книгу Света, харатья 1: "Некогда, вернее тогда, кода не было пространства и времен нами людьми воспринимаемых, был не воплощаясь Един Великий Рамха. Он проявился в новую действительность и от восприятия новой бескрайней бесконечности озарился великим светом радости". Т.е. видите, Веды говорят что было такое состояние, когда не было времен и пространства. Значит что-то было безвременное и безпространственное. Но заметьте, он проявился в новую действительность. А это о чем говорит? Что где-то была старая действительность, где он, возможно, был не один. Ну, наткнулся он на новую действительность и от него пошел Свет, и появились новые Вселенные. Т.е. это та самая точка. Которую ученные называют точкой сингулярности,т.е. когда, вся вселенная или что бы то ни было, была когда-то в единой, непространственной структуре. Только они до сих пор и не знают, кто поднес спичку, у них же до сих пор идея вселенского взрыва. А это просто не воплощаясь Рамха проявился и вот свет радости, поток Инглии, он наполнил жизнью и жизнь появилась. Вот она единая точка. Т.е. как бы в нулевом, беспространственном, я его поставил как бы сферическое проявление. Азъ, он был един не воплощаясь.

 

│а│º = 1

 

Т.е. как бы Азъ внулевом это есть единый, изначальный.

Ну потом, свет пошел, начал соединять. Азъ появилась первая пространственная характеристика, которую начал наполнять свет.

 

│а│1

 

 

И заметьте, и как только свет, Инглия, истек, он начал наполнять, и в этот момент, как говорят Веды, в новой действительности появилось Велике Сверхгигантское Нечто. А так как оно не было тем, чем являлся Великий Рамха, значит она стала точкой противоположности. А если есть что-то одно и ему противоположное, это чему равно? Двум. Как бы светлое и темное.

│а│1 = 2

 

А теперь, мы запишем подправило: "Любая фигура, объект или структура одномерного пространства будет иметь две опорные точки".

 

И когда вы в школе изображали оси координат, вы что рисовали?- где-то минус бесконечность, где-то плюс бесконечность. И вот это плюс бесконечность – это положительное светлое, а минус как бы мрачное, уходящее во мрак. Все текло от плюса к минусу. И так же и в этой (прим. вертикальной) пространственной оси.

 

Далее. Вот мы перешли к двухмерному пространству. Вот сейчас мы перейдем к проекции. Т.е. мы имеем, что на сей момент – какой-то отрезок одномерного пространства. Чтобы получить его структурную характеристику в двухмерном пространстве, мы должны провести проекцию к длине отрезка и на длину данного отрезка.

И это я запишу следующим образом: "а" первого пространства, первой мерности спроецирован на "а" первой мерности. Сколько здесь у меня?- две мерности. И что у меня получилось?- четыре (рис.1)

 
 

 

 

 


(рис.1) │а│2 = │а│1 ┴ │а│1 = 4

 

Т.е. мы получили проекцию квадрата, у которого 4 опорные точки.

 

Чтобы получить фигуру трехмерного пространства мы должны "а" второе спроецировать на "а" второе. Объясняю, что мы делаем. Мы должны провести проекцию уже не к линии, к отрезку, мы должны провести проекцию квадрата на длину квадрата. И мы получили уже куб. и сколько опорных точек?- 8

 

│а│3 = │а│2 ┴ │а│2 = 8

 

А теперь посмотрите на свои формулы – определенная прогрессия. Т.е. чтобы получить четырехмерную фигуру мы должны что сделать?- мы должны провести проекцию третьей на длину третьей. Т.е. мы должны что?- спроецировать куб на длину куба (рис. 2)

 
 

 

 


(рис. 2)

 

Таким образом, мы его проецируем разворачивая. И получилось 16 опорных точек.

 

│а│4 = │а│3 ┴ │а│3 = 16

 

Дальше идет принцип, который никто не отвергал. Многие говорят: "А чем вы докажете". - С компьютерами дело все имеют? Память. Сначала 4 Мб, потом появилось 8, потом 16. значит в пятимерном пространстве эта фигура будет иметь 32 опорные точки. В шестимерном пространстве – 64, в семимерном - 128, в восьмимерном – 256. (рис. 3)

 

| a | 5 | a | 4 | a | 4 32

       
   
 
 

 


| a | 6 | a | 5 | a | 5 64

 

 


(рис. 3)

 

Шестнадцатимерное пространство, оно есть следующее гармоничное пространство за нашим. Если у нас здесь открыты 16 каналов для того чтобы мы познали 16-мерное пространство, там-то у нас будет раскрыто 256. Это мы познаем. А структурная разверстка идет с увеличением, значит что?- 65 536 опорных точек. Всего!

 

И заметьте, куб сколько имеет?- 8 опорных точек. Когда говорим ЖДЫ, умножение, мы говорим о трехмерности – дважды. А когда я говорю "два", значит два куба в пространстве.

Дважды два – шестнадцать. Дошло?

Потому что когда в школе вам сказали: два плюс два – четыре, дважды два – четыре, два во второй степени – четыре, вас два раза из трех обманули. Два плюс два – четыре, дважды два – 16, а два во второй степени будет 3,99999999… - оно никогда не будет равно 4, потому что мерность нашего пространства не равно трем.

 

 

Пишем дальше тему.

 

Определение мерности при использовании четко структурных изображений

 

│а│2 = 3

 

(а = 3)

 

Раз оно трехмерное, то я и изображаю вам данную четкую структуру. (рис. 4)

 

 
 

 

 


(рис. 4)

 
 


Т.е. здесь мы также занимаемся проекцией, только не в гармоничной форме, а в отображении к четкой структуре. Поэтому (рис. 5)

 

 

 

 


(рис. 5) | а | 3 = 4

 

Чтобы получить 4-мерную фигуру я должен что сделать?- спроецировать структурно данную фигуру. (рис. 6)

 

 
 

 

 


(рис. 6) | а | 4 = 5

 

 

И у меня получилось что?- два тетропака соединены между собой.

 

А теперь | а | 5: (рис. 7)

 

 
 

 


5’
3’
 
| а | 5 = 9 (точка №1 является общей для обоих проекций)

       
   
 
 

 

 


(рис. 7)

 

Дальше, 6-тимерная: (рис. 8)

 

 
 

 

 


| а | 6 | а | 5 | а | 5 - 2 (общие точки) 16

 

 
 

 

 


(рис. 8)

 

А теперь представьте семимерная: (рис. 9)

       
   
 
 

 

 


| а | 7 | а | 6 | а | 6 16 + 16 – 4 (общ.точки) 28

 
 

 

 


(рис. 9)

 

И вот на этой системе и построено умножение.

 



<== предыдущая лекция | следующая лекция ==>
действия норм гражданского права в пространстве, во времени и по кругу лиц | Вибір теми навчально–наукового проекту
Поделиться с друзьями:


Дата добавления: 2016-03-28; Мы поможем в написании ваших работ!; просмотров: 342 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2355 - | 2039 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.