Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Прямая в пространстве и различные способы ее задания




 

Уравнение прямой, проходящей через заданную точку параллельно вектору имеет вид:

(1)

и называется векторно-параметрическим уравнением прямой. Здесь – радиус-вектор произвольной точки М(x,y,z) прямой; – радиус-вектор фиксированной точки , t – параметр, принимающий всевозможные действительные значения. Вектор называется направляющим вектором прямой, а его координаты направляющими коэффициентами прямой.

 

 

Если в уравнении (1) перейти к координатам векторов, то получаются параметрические уравнения прямой:

(2)

Если из уравнений (2) исключить параметр t, то получаются канонические уравнения прямой:

(3)

Уравнения прямой, проходящей через две точки М1(x1,y1,z1) и М2(x2,y2,z2) имеют вид:

(4)

Прямую в пространстве можно рассматривать как линию пересечения двух плоскостей

Т.о., прямая определяется совместным заданием системы двух линейных уравнений:

(5)

---------------------------------------------------------------------------------------------------------------- Прямая в пространстве. Стр. 1.

Они называются общими уравнениями прямой. В этом случае направляющий вектор прямой можно определить следующим образом:

.

 

Пусть заданы две прямые: и . Тогда условие параллельности прямых записывается в виде: , условие перпендикулярности – в виде: , а угол между ними вычисляется по формуле

.

Пример 1. Составить уравнения прямой, проходящей через точку M 1(2;0;–3) параллельно: а) вектору ; б) прямой ; в) оси Ox.

Решение. а) Так как искомая прямая параллельна вектору , то этот вектор можно принять за ее направляющий вектор. Тогда канонические уравнения искомой прямой имеют вид:

б) Так как искомая прямая параллельна прямой с направляющим вектором , то этот вектор параллелен искомой прямой, значит, его можно принять за направляющий вектор искомой прямой. Тогда канонические уравнения искомой прямой имеют вид:

.

в) Так как искомая прямая параллельна оси Ox, значит, она параллельна вектору , т.е. и канонические уравнения искомой прямой имеют вид:

.

Случай, когда хотя бы в одном знаменателе канонических уравнений прямой получается ноль, не лишено смысла, но свидетельствует о том, что направляющий вектор прямой имеет одну или две нулевые координаты. В таких случаях лучше записывать параметрические уравнения прямой:

 

---------------------------------------------------------------------------------------------------------------- Прямая в пространстве. Стр. 2.

Пример 2. Составить канонические уравнения прямой

Решение. Для составления канонических уравнений прямой необходимо знать направляющий вектор и какую-нибудь фиксированную точку на прямой M 0. Направляющий вектор вычислим как векторное произведение нормальных векторов плоскостей, эту прямую образующих. Т.к. , , то

В качестве фиксированной точки можно выбрать любую точку прямой. Зададим одну из координат искомой точки произвольно. Пусть z=0. Тогда

.

Теперь составляем канонические уравнения прямой, зная ее направляющий вектор и фиксированную точку M 0:





Поделиться с друзьями:


Дата добавления: 2016-03-28; Мы поможем в написании ваших работ!; просмотров: 764 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2378 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.