Безопасность любой криптосистемы определяется используемыми криптографическими ключами. В случае ненадежного управления ключами злоумышленник может завладеть ключевой информацией и получить полный доступ ко всей информации в системе или сети.
Различают следующие виды функций управления ключами: генерация, хранение, и распределение ключей.
Способы генерации ключей для симметричных и асимметричных криптосистем различны. Для генерации ключей симметричных криптосистем используются аппаратные и программные средства генерации случайных чисел. Генерация ключей для асимметричных криптосистем более сложна, так как ключи должны обладать определенными математическими свойствами. Подробнее на этом вопросе остановимся при изучении симметричных и асимметричных криптосистем.
Функция хранения предполагает организацию безопасного хранения, учета и удаления ключевой информации. Для обеспечения безопасного хранения ключей применяют их шифрование с помощью других ключей. Такой подход приводит к концепции иерархии ключей. В иерархию ключей обычно входит главный ключ (т.е. мастер-ключ), ключ шифрования ключей и ключ шифрования данных. Следует отметить, что генерация и хранение мастер-ключа является критическим вопросом криптозащиты.
Распределение - самый ответственный процесс в управлении ключами. Этот процесс должен гарантировать скрытность распределяемых ключей, а также быть оперативным и точным. Между пользователями сети ключи распределяют двумя способами:
- с помощью прямого обмена сеансовыми ключами;
- используя один или несколько центров распределения ключей.
Компьютерные атаки и технологии их обнаружения
До сих пор нет точного определения термина "атака" (вторжение, нападение). Каждый специалист в области безопасности трактует его по-своему. Наиболее правильным и полным я считаю следующее определение. Устраним уязвимости информационной системы - устраним и возможность реализации атак.
Атакой на информационную систему называются преднамеренные действия злоумышленника, использующие уязвимости информационной системы и приводящие к нарушению доступности, целостности и конфиденциальности обрабатываемой информации.
На сегодняшний день считается неизвестным, сколько существует методов атак. Говорят о том, что до сих пор отсутствуют какие-либо серьезные математические исследования в этой области. Но еще в 1996 году Фред Коэн описал математические основы вирусной технологии. В этой работе доказано, что число вирусов бесконечно. Очевидно, что и число атак бесконечно, поскольку вирусы - это подмножество множества атак.
Модели атак
Традиционная модель атаки строится по принципу " один к одному " (рис.1) или " один ко многим " (рис.2), т.е. атака исходит из одного источника. Разработчики сетевых средств защиты (межсетевых экранов, систем обнаружения атак и т.д.) ориентированы именно на традиционную модель атаки. В различных точках защищаемой сети устанавливаются агенты (сенсоры) системы защиты, которые передают информацию на центральную консоль управления. Это облегчает масштабирование системы, обеспечивает простоту удаленного управления и т.д. Однако такая модель не справляется с относительно недавно (в 1998 году) обнаруженной угрозой - распределенными атаками.
Рисунок 1. Отношение "один к одному"
Рисунок 2. Отношение "один ко многим"
В модели распределенной атаки используются иные принципы. В отличие от традиционной модели в распределенной модели используются отношения " многие к одному " (рис.3) и " многие ко многим " (рис.4).
Рисунок 3. Отношение "многие к одному"
Рисунок 4. Отношение "многие ко многим"
Распределенные атаки основаны на "классических" атаках типа "отказ в обслуживании", а точнее на их подмножестве, известном как Flood-атаки или Storm-атаки (указанные термины можно перевести как "шторм", "наводнение" или "лавина"). Смысл данных атак заключается в посылке большого количества пакетов на атакуемый узел. Атакуемый узел может выйти из строя, поскольку он "захлебнется" в лавине посылаемых пакетов и не сможет обрабатывать запросы авторизованных пользователей. По такому принципу работают атаки SYN-Flood, Smurf, UDP Flood, Targa3 и т.д. Однако в том случае, если пропускная способность канала до атакуемого узла превышает пропускную способность атакующего или атакуемый узел некорректно сконфигурирован, то к "успеху" такая атака не приведет. Например, с помощью этих атак бесполезно пытаться нарушить работоспособность своего провайдера. Но распределенная атака происходит уже не из одной точки Internet, а сразу из нескольких, что приводит к резкому возрастанию трафика и выведению атакуемого узла из строя. Например, по данным России-Онлайн в течение двух суток, начиная с 9 часов утра 28 декабря 2000 г. крупнейший Internet-провайдер Армении "Арминко" подвергался распределенной атаке. В данном случае к атаке подключились более 50 машин из разных стран, которые посылали по адресу "Арминко" бессмысленные сообщения. Кто организовал эту атаку, и в какой стране находился хакер - установить было невозможно. Хотя атаке подвергся в основном "Арминко", перегруженной оказалась вся магистраль, соединяющая Армению с всемирной паутиной. 30 декабря благодаря сотрудничеству "Арминко" и другого провайдера - "АрменТел" - связь была полностью восстановлена. Несмотря на это компьютерная атака продолжалась, но с меньшей интенсивностью.