Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Закон всемирного тяготения

Глава 5

Тяготение. Элементы теории поля

Законы Кеплера.

Закон всемирного тяготения

Еще в глубокой древности было замечено, что в отличие от звезд, которые неизменно сохраняют свое взаимное расположение в пространстве в течение столетий, плане­ты описывают среди звезд сложнейшие траектории. Для объяснения петлеобраз­ного движения планет древнегреческий ученый К. Птоломей (II в. н.э.), считая Землю расположенной в центре Вселен­ной, предположил, что каждая из планет движется по малому кругу (эпициклу), центр которого равномерно движется по большому кругу, в центре которого на­ходится Земля. Эта концепция получила название птоломеевой геоцентрической системы мира и при поддержке католиче­ской церкви господствовала почти полто­ры тысячи лет.

В начале XVI в. польским астрономом Н. Коперником (1473—1543) обоснована гелиоцентрическая система (см. § 5), сог­ласно которой движения небесных тел объясняются движением Земли (а также других планет) вокруг Солнца и суточным вращением Земли. Теория и наблюдения Коперника воспринимались как занима­тельная фантазия.

К началу XVII столетия большинство ученых убедилось, однако, в справедливо­сти гелиоцентрической системы мира. И. Кеплер (1571 — 1630), обработав и уточнив результаты многочисленных на­блюдений датского астронома Т. Браге (1546—1601), изложил законы движения планет:

1. Планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

2. Радиус-вектор планеты за равные промежутки времени описывает одинако­вые площади.

3. Квадраты периодов обращения пла­нет вокруг Солнца относятся как кубы больших полуосей их орбит.

Впоследствии И. Ньютон, изучая дви­жение небесных тел, на основании законов

Кеплера и основных законов динамики открыл всеобщий закон всемирного тя­готения: между любыми двумя материаль­ными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m 1 и m 2) и обратно пропорциональная квадрату расстояния между ними (r2):

F=Gm1m2/r2. (22.1)

Эта сила называется гравитационной (или силой всемирного тяготения). Силы тяго­тения всегда являются силами притяже­ния и направлены вдоль прямой, проходя­щей через взаимодействующие тела. Ко­эффициент пропорциональности G на­зывается гравитационной постоянной.

Закон всемирного тяготения установ­лен для тел, принимаемых за материальные точки, т. е. для таких тел, размеры кото­рых малы по сравнению с расстоянием между ними. Если же размеры взаимодей­ствующих тел сравнимы с расстоянием между ними, то эти тела надо разбить на точечные элементы, подсчитать по форму­ле (22.1) силы притяжения между всеми попарно взятыми элементами, а затем гео­метрически их сложить (проинтегриро­вать), что является довольно сложной ма­тематической задачей.

Впервые экспериментальное доказа­тельство закона всемирного тяготения для земных тел, а также числовое определение гравитационной постоянной G проведено английским физиком Г. Кавендишем (1731 —1810). Принципиальная схема опыта Кавендиша, применившего крутиль­ные весы, представлена на рис. 37. Легкое коромысло А с двумя одинаковыми шари-

 

 

ками массой m = 729 г подвешено на уп­ругой нити В. На коромысле С укреплены на той же высоте массивные шары массой М=158 кг. Поворачивая коромысло С во­круг вертикальной оси, можно изменять расстояние между шарами с массами m и M. Под действием пары сил, при­ложенных к шарам m со стороны шаров M, коромысло А поворачивается в гори­зонтальной плоскости, закручивая нить В до тех пор, пока момент сил упру­гости не уравновесит момента сил тяготе­ния. Зная упругие свойства нити, по изме­ренному углу поворота можно найти воз­никающие силы притяжения, а так как массы шаров известны, то и вычислить значение G.

Значение G, приводимое в табли­цах фундаментальных физических пос­тоянных, принимается равным 6,6720•10-11Н•м2/кг2, т.е. два точечных тела массой по 1 кг каждое, находящиеся на расстоянии 1 м друг от друга, при­тягиваются с силой 6,6720-10-11Н. Очень малая величина G показывает, что сила гравитационного взаимодействия может быть значительной только в случае боль­ших масс.



<== предыдущая лекция | следующая лекция ==>
Технологія навчання, побудованого на принципі рольової перспективи | Работа в поле тяготения. Потенциал поля тяготения
Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 299 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Стремитесь не к успеху, а к ценностям, которые он дает © Альберт Эйнштейн
==> читать все изречения...

2152 - | 2108 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.