I.Техническое задание
Фильтр высоких частот изображён на рисунке 1.
Фильтр верхних частот (ФВЧ) — электронный или любой другой фильтр, пропускающий высокие частоты входного сигнала, при этом подавляя частоты сигнала ниже частоты среза
Частота среза – это частота, на которой происходит спад амплитуды выходного сигнала фильтра до значения 0,7 от входного сигнала.
Формула расчета фильтра высоких частот:
Фильтр высоких частот используется для выделения высоких частот из сигнала и часто используется в обработке аудиосигналов, например в кроссоверах[en]. Ещё одно важное применение фильтра верхних частот — устранение лишь постоянной составляющей сигнала (см. Ёмкостная связь (англ.)русск.), для чего частоту среза выбирают достаточно низкой.
Фильтры верхних частот используются в простых бестрансформаторных конденсаторных преобразователях напряжения для понижения напряжения переменного тока. К недостаткам таких преобразователей относится их высокая чувствительность к импульсным помехам в источнике переменного тока, а также зависимость выходного напряжения от импеданса нагрузки[1].
Фильтры верхних частот используются в обработке изображений для того, чтобы осуществлять преобразования в частотной области (например, для выделения границ).
Используется также последовательное включение фильтра верхних частот с фильтром нижних частот (ФНЧ). Если при этом частота среза ФВЧ меньше, чем частота среза ФНЧ (то есть, имеется диапазон частот, в котором оба фильтра пропускают сигнал), получится полосовой фильтр (используется для выделения из сигнала определённой полосы частот).
Построение АЧХ и ФЧХ для коэффициента усиления по напряжению
Рисунок 2. – Схема для снятия АЧХ фильтра
Установим на выходе генератора VSIN напряжение амплитудой 1 В, а на выход фильтра – маркер Voltage/Level для получения АЧХ или Phase of Voltage для получения ФЧХ. Получим следующие частотные характеристики.
Рисунок 3.1 – АЧХ фильтра (при частоте от 0 до 1 МГц)
Рисунок 3.2 – ФЧХ фильтра (при частоте от 0 до 1 МГц)
Как видим по АЧХ, этот фильтр имеет полосу пропускания в диапазоне, приблизительно, от 0 до 120 кГц, поэтому снимем частотные характеристики ещё раз на этом участке.
Рисунок 3.3 – АЧХ фильтра (при частоте от 0 до 120 кГц)
Определим параметры фильтра.
Полоса пропускания:
кГц;
кГц.
Максимальный коэффициент усиления по напряжению:
Рисунок 3.4 – ФЧХ фильтра (при частоте от 0 до 120 кГц)
4. Построение АЧХ и ФЧХ входной проводимости
Для получения АЧХ входной проводимости на вход установим датчик тока (резистор R_dat_I на рис. 4.1) и снимем падение напряжения на нём, которое будет равно входному току. Так как амплитуда генератора 1 В, то получим сразу выражение для входной проводимости в См.
Для получения ФЧХ входной проводимости поставим маркер Phase of Voltage сразу после датчика тока.
АЧХ и ФЧХ входной проводимости на рис. 4.2 и 4.3 соответственно.
Рисунок 4.1 – Схема для получения АЧХ входной проводимости
Рисунок 4.2 – АЧХ входной проводимости
Рисунок 4.3 – ФЧХ входной проводимости