26.Основные критерии надежности
Для объектов в зависимости от назначения применяют различные показатели надежности. Различают восстанавливаемые и невосстанавливаемые объекты, что определяется нормативно-технической документацией. Если нормативно-технической и конструкторской документацией предусмотрено проведение ремонта объекта, то он называется ремонтируемым.
Неремонтируемые объекты работают до первого отказа, после чего они снимаются с эксплуатации. Значительное количество электрических машин относится к числу неремонтируемых объектов. Для оценки надежности неремонтируемых электрических машин используют вероятностную характеристику случайной величины — наработку до отказа Т, под которой понимают наработку объекта от начала эксплуатации до возникновения первого отказа.
Распределение наработки до отказа может быть описано:
1. вероятностью безотказной работы P{t);
2. плотностью распределения наработки до отказа f(t);
3. интенсивностью отказов λ(t).
27.Обшие конструктивные требования при выполнении схем электроснабжения
28.Методы определения расчетных электрических нагрузок
Одной из первых и основополагающих частей проекта электроснабжения промышленного предприятия любой отрасли является определение ожидаемых электрических нагрузок всех элементов заводских электрических сетей. Именно нагрузки определяют необходимые технические характеристики элементов электрических сетей - сечения токоведущих частей, мощности и типы трансформаторов.
Промышленные предприятия потребляют около двух третей вырабатываемой электроэнергии, поэтому требования к точности расчетов нагрузок достаточно велики. Их результат сказывается на технико-экономических показателях системы электроснабжения, а в целом на эффективности работы предприятия и его конкурентоспособности. Завышение электрических нагрузок ведет к необоснованному увеличению сечений токведущих частей, мощностей трансформаторов, что увеличивает капиталовложения. Эксплуатация недогруженных трансформаторов нецелесообразна из-за больших потерь электроенергии в них по сравнению с трансформаторами меньшей мощности. Занижение расчётной нагрузки приводит к перегреву элементов электрических сетей, ускореному старению изоляции электрооборудования и токоведущих частей, нарушению электромагнитной совместимости электроприёмников (ЭП).
29.Расчетный и технический учет активной энергии и активной мощности
30.Многофункциональные счетчики электрической энергии
азличают однофазные и трехфазные счетчики. Однофазные счетчики применяются для учета электроэнергии у потребителей, питание которых осуществляется однофазным током (в основном, бытовых). Для учета электроэнергии трехфазного тока применяются трех фазные счетчики.
Трехфазные счетчики можно классифицировать следующим образом.
По роду измеряемой энергии — на счетчики активной и реактивной энергии.
В зависимости от схемы электроснабжения, для которой они предназначены,— на трехпроводные счетчики, работающие в сети без нулевого провода, и четырехпроводные, работающие в сети с нулевым проводом.
По способу включения счетчики можно разделить на 3 группы
- Счетчики непосредственного включения (прямого включения), включаются в сеть без измерительных трансформаторов. Такие счетчики выпускаются для сетей 0,4/0,23 кВ на токи до 100 А.
- Счетчики полукосвенного включения, своими токовыми обмотками включаются через трансформаторы тока. Обмотки напряжения включаются непосредственно в сеть. Область применения - сети до 1 кВ.
- Счетчики косвенного включения, включаются в сеть через трансформаторы тока и трансформаторы напряжения. Область применения - сети выше 1 кВ.
Счетчики косвенного включения изготовляются двух типов. Трансформаторные счетчики — предназначены для включения через измерительные трансформаторы, имеющие определенные наперед заданные коэффициенты трансформации. Эти счетчики имеют десятичный пересчетный коэффициент (10п). Трансформаторные универсальные счетчики — предназначены для включения через измерительные трансформаторы, имеющие любые коэффициенты трансформации. Для универсальных счетчиков пересчетный коэффициент определяется по коэффициентам трансформации установленных измерительных трансформаторов.
31.Назначения релейной защиты
В энергосистемах на электрооборудовании электростанций, в электрических сетях и на электроустановках потребителей за счет внешних (ветер, дождь, наледь) и внутренних условий (старение и разрушение изоляции, неправильные действия персонала и т.д.) могут возникнуть режимы, на которые электроустановки не рассчитаны. К ним относятся повреждение и ненормальные режимы.
Повреждения в основном ведут к коротким замыканиям, которые сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы. Следствиями повреждений могут быть:
1. нарушение нормальной работы большого числа потребителей электроэнергии и брак продукции в следствии сильного понижения напряжения в значительной части системы;
2. разрушение поврежденного элемента дугой, часто возникающей при К.З. в месте нарушения изоляции;
3. разрушение оборудования в неповрежденной части системы в результате теплового и динамического действия тока К.З., достигающих иногда больших значений;
4. нарушение устойчивости системы, когда ее нормальная работа может полностью парализоваться.
Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы.
Кроме этого к основным видам ненормальных режимов относятся перегрузки. В этом случае в перегруженном элементе возникают токи, превосходящие длительно допустимые для его значения. При достаточно большом времени существования этих токов температура токовых частей недопустимо повышается, а их изоляция ускоренно изнашивается или разрушается.
Следовательно повреждения и неморальные режимы могут проводит к возникновению с системе аварий, под которыми, обычно понимаются вынужденные нарушения нормальной работы всей системы или только ее части, сопровождающихся недоотпуском энергии потребителям, недопустимым понижением его качества, за счет чего приносится материальный ущерб в виде невыработанной продукции или разрушение основного оборудования.
В большинстве случаев аварии или их развитие могут быть ликвидированы быстрым отключением поврежденного участка электрической установки или сети при помощи специальных автоматических устройств, действующих на отключение выключателей и получивших название релейная защита.
Первоначально в качестве защитных устройств применялись плавкие предохранители. Однако по мере роста мощности и напряжения электроустановок и усложнения их схем коммутации такой способ стал недостаточным, в силу чего были созданы защитные устройства, выполненные с помощью специальных автоматов – реле. Отсюда и название – релейная защита.
Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная и надежная работа современных энергетических систем.
Она осуществляет непрерывный контроль за состоянием и режимом работы всех элементов энергосистемы и реагирует на возникающие повреждения и ненормальные режимы.
Таким образом основным назначением релейной защиты является выявление места возникновения короткого замыкания и быстрое автоматическое отключение с помощью выключателей поврежденного оборудования или участка сети от остальной неповрежденной части электрической установки или сети.
Вторым, дополнительным назначением релейной защиты является выявление нарушений нормальных режимов работы оборудования и подача предупредительных сигналов обслуживающему персоналу или отключение оборудования с выдержкой времени.
Из вышеизложенного следует, что релейная защита – совокупность устройств и вспомогательных элементов предназначенных в случае повреждения и опасно ненормальных условиях работы элемента системы (линии, машины, трансформатора и т.д.) отключить его воздействием на выключатель или действовать на сигнал.
В современных электрических системах релейной защиты тесно связана с электрической автоматикой, предназначенной для быстрого автоматического восстановления нормального режима и питания потребителей.
К основным устройствам такой автоматики относятся:
• автоматы повторного включения;
• автоматы включения резервных источников питания и оборудования;
• автоматы частотной разгрузки.
32.Основные требования, предъявляемые к релейной защите
В общем случае к релейной защите, действующей при повреждениях на отключение, предъявляются следующие четыре основных технических требования:
1. селективность;
2. быстрота отключения;
3. чувствительность;
4. надежность.
Селективность.
Селективностью, или избирательностью, называется действие защиты, обеспечивающее отключение только поврежденного элемента системы посредством его выключателей.
Таким образом, требование селективности является основным условием для обеспечения надежного питания потребителей.
Селективное действие защит при наличии резервного питания потребителей дает возможность исключить перерывы в их электроснабжении.
При отсутствии резервирования даже при селективном действии защит возможна потеря питания.
Т.к. повреждение на ВЛ носят в основном проходящий характер наиболее эффективности в этом случае будет применение АПВ. АПВ обеспечивает 70-90% успешных включений.
Требование селективности не должно исключать возможность действия защит как резервных в случаях отказа защит или выключателей смежных элементов. Пример: отказ защит 8 при К.З.в К3.
33.Структурная схема релейной защиты
-3. Структурная схема релейной защиты трансформаторов
Релейная защита трансформаторов может выполняться с помощью вторичных реле прямого или косвенного действия. Вторичными называются реле, включенные через измерительные трансформаторы тока и напряжения.
Реле прямого действия выполняют функции измерительного органа тока (напряжения) и одновременно — электромагнита отключения выключателя (50). Они используются для защиты понижающих трансформаторов с высшим напряжением 6 и 10 кВ, имеющих на стороне ВН выключатель. В некоторых случаях с помощью реле прямого действия осуществляется защита трансформаторов 35 кВ также при наличии выключателя на стороне ВН.
Токовые реле прямого действия используются для выполнения токовой отсечки и максимальной токовой защиты (без пускового органа напряжения) на трансформаторах мощностью, как правило, не более 1 MB-А. Релейная защита с реле косвенного действия имеет значительно более сложную схему (рис. 4-3,6). Измерительная часть защиты состоит из измерительных органов (реле), которые непрерывно получают информацию о состоянии защищаемого объекта от трансформаторов тока ТТ и трансформаторов напряжения ТН. Когда измеряемая величина (ток, напряжение) достигнет заранее заданного значения, называемого параметром срабатывания или уставкой, измерительный орган срабатывает и подает сигнал на логическую часть защиты.
Логическая часть релейной защиты предназначена для выполнения логических операций сложения, умножения, отрицания и задержки.
Функциональные схемы релейной зашиты понижающего трансформатора с реле прямого действия (а) и косвенного действия (б)
34.Виды повреждений и ненормальные режимы работы энергосистемы
В энергетических системах могут возникать повреждения и ненормальные режимы работы электрооборудования электростанций и подстанций, их распределительных устройств, линий электропередачи и электроустановок потребителей электрической энергии.
Повреждения в большинстве случаев сопровождаются значительным увеличением тока и глубоким понижением напряжения в элементах энергосистемы.
Повышенный ток выделяет большое количество тепла, вызывающее разрушения в месте повреждения и опасный нагрев неповрежденных линий и оборудования, по которым этот ток проходит.
Понижение напряжения нарушает нормальную работу потребителей электроэнергии и устойчивость параллельной работы генераторов и энергосистемы в целом.
Ненормальные режимы обычно приводят к отклонению величин напряжения, тока и частоты от допустимых значений. При понижении частоты и напряжения создается опасность нарушения нормальной работы потребителей и устойчивости энергосистемы, а повышение напряжения и тока угрожает повреждением оборудования и линий электропередачи.
Таким образом, повреждения нарушают работу энергосистемы и потребителей электроэнергии, а ненормальные режимы создают возможность возникновения повреждений или расстройства работы энергосистемы.
Для обеспечения нормальной работы энергетической системы и потребителей электроэнергии необходимо возможно быстрее выявлять и отделять место повреждения от неповрежденной сети, восстанавливая таким путем нормальные условия их работы и прекращая разрушения в месте повреждения.
Опасные последствия ненормальных режимов также можно предотвратить, если своевременно обнаружить отклонение от нормального режима и принять меры к его устранению (снизить ток при его нарастании, понизить напряжение при его увеличении и т.д.).
В связи с этим возникает необходимость в создании и применении автоматических устройств, выполняющих указанные операции и защищающих систему и ее элементы от опасных последствий повреждений и ненормальных режимов.
35.Общие сведения о высокочастотных защитах
Высокочастотная защиты является быстродействующей и предназначена для линий средней и большой протяженности.Они применяются в тех случаях когда по условиям устойчивости или другим причинам необходимо быстрое отключение поврежденной линии с обеих сторон при К.З. в любом участке этой линии. Удовлетворяющие этому требованию продольные диф.защиты непригодны для данных линий вследствие большой стоимости соединительного кабеля.
ВЧ защиты состоят из двух комплектов, расположенных по концам линии. Особенностью этих защит является то, что им необходимо связь между комплектами защиты, которая осуществляется посредством токов высокой частоты, которые передаются по проводам защищаемой линии. По своему принципу ВЧ защиты не реагируют на К.З. вне защищаемой линии и поэтому не имеют выдержки времени. В настоящее время применяются два вида ВЧ защит:
1. направленная защита с ВЧ блокировкой, основанные на сравнении направления мощности защищаемой линии по концам;
2. дифференциально-фазные защиты, основанные на сравнении фаз токов.
36.Назначение и область применения АПВ
Опыт эксплуатации сетей высокого напряжения показал, что если поврежденную линию электропередачи быстро отключить, т. е. снять с нее напряжение, то в большинстве случаев повреждение ликвидируется. При этом электрическая дуга, возникавшая в месте короткого замыкания (КЗ), не успевает вызвать существенных разрушений оборудования, препятствующих обратному включению линии под напряжение.
Самоустраняющиеся повреждения принято называть неустойчивыми. Такие повреждения возникают в результате грозовых перекрытий изоляции, схлестывания проводов при ветре и сбрасывании гололеда, падения деревьев, задевания проводов движущимися механизмами.
Данные о повреждаемости воздушных линий электропередачи (ВЛ) за многолетний период эксплуатации показывают, что доля неустойчивых повреждений весьма высока и составляет 50—90 %.
При ликвидации аварии оперативный персонал производит обычно опробование линии путем включения ее под напряжение, так как отыскание места повреждения на линии электропередачи путем ее обхода требует длительного времени, а многие повреждения носят неустойчивый характер. Эту операцию называют повторным включением.
Если КЗ самоустранилось, то линия, на которой произошло неустойчивое повреждение, при повторном включении остается в работе. Поэтому повторные включения при неустойчивых повреждениях принято называть успешными.
На ВЛ успешность повторного включения сильно зависит от номинального напряжения линий. На линиях ПО кВ и выше успешность повторного включения значительно выше, чем на ВЛ 6—35 кВ. Высокий процент успешных повторных включений в сетях высокого и сверхвысокого напряжения объясняется быстродействием релейной защиты (как правило, не более 0,1-0,15 с), большим сечением проводов и расстояний между ними, высокой механической прочностью опор.
37.Основные технические требования, предъявляемые к устройствам АПВ
Факторы, определяющие условия эксплуатации устройств АПВ в энергосистемах, обусловливают технические требования, предъявляемые к ним при разработке схем, выборе рабочих уставок и при наладке АПВ.
С точки зрения сохранения устойчивой работы электрической системы желательно иметь максимальное быстродействие АПВ. Однако быстродействие ограничивается опасностью повторного зажигания дуги после подачи напряжения; перерыв в подаче напряжения должен быть больше времени деионизации среды, в которой гасится дуга. Приходится учитывать и то обстоятельство, что условия работы выключателей в цикле АПВ тяжелее обычных. Особенно это относится к масляным выключателям, в которых масло, окружающее место разрыва контактов, при отключении КЗ разлагается и обугливается под действием дуги, теряя изоляционные свойства. Возможность работы в цикле АПВ воздушных выключателей определяется практически только количеством и давлением сжатого воздуха в резервуарах выключателя.
На быстродействие АПВ влияют время готовности привода выключателя к работе на включение, а также время возврата в исходное положение реле защиты, действовавшей при коротком замыкании.
При выполнении устройств АПВ соблюдают еще ряд обязательных условии кроме указанных выше.. Повреждения, появившиеся на присоединениях, отключенных по режиму, в ремонт и т. п., практически всегда носят устойчивый характер. Автоматическое повторное включение в указанных ситуациях приводило бы к развитию повреждений оборудования, необходимости более частых ревизий выключателей. Поэтому при автоматическом отключении выключателя, последовавшем сразу же после его оперативного включения дежурным персоналом, пуск АПВ производиться не должен.
38.Виды устройств АВР
Устройства АВР (автоматического ввода резерва) предназначены для защиты потребителя от возможных перебоев в подаче электроэнергии. Процесс осуществляется путем переключения потребителей на резервный источник питания при изменении заданных (нормальных) параметров (исчезновении напряжения, обрыве фазы, недопустимом снижении напряжения, перекосе фаз, нарушении порядка чередования) на рабочем вводе. Обратное переключение происходит автоматически при их восстановлении либо система начинает работать на втором вводе вне зависимости от восстановления напряжения на первом вводе, при равнозначных вводах, что задаётся алгоритмом работы.
Основным вводом, как правило, считается внешняя сеть промышленного напряжения 380 В, 50 Гц. В качестве резервного источника устройство АВР может подключить как отдельный источник электроэнергии (генератор / аккумуляторную батарею), так и осуществить переключение на второй ввод внешней сети.
Устройства АВР могут использоваться как самостоятельные или работать в составе более сложного оборудования. Они применяются:
• В виде комплектного устройства, когда оборудование АВР устанавливается в отдельном шкафу.
• В составе других комплектных устройств (вводно-распределительных устройств ВРУ, УВР, панелей ЩО-70, пунктов распределительных, камер КСО, КТПн), при этом АВР монтируется в корпусе комплектного устройства.
В целях бесперебойного электроснабжения устройства АВР осуществляют следующие функции:
• контроль напряжения в цепях;
• сравнение значений напряжения с заранее заданными;
• соблюдение правильности чередования фаз обоих источников питания;
• переключение на резервный источник питания;
• восстановление доаварийной схемы работы при возвращении заданных параметров напряжения;
• управление основным или резервным питанием оператором вручную;
• визуальный контроль работы вводов.
Начальный этап в производстве АВР предусматривает выбор алгоритма, по которому планируется его работа. Схемы различаются в зависимости от типа устройства. Существует три вида схем — АВР с приоритетом первого ввода, с равноценными вводами и без возврата.
Покупая современное устройство АВР, следует учитывать, что окончательная его цена уточняется у менеджера перед заказом. Обращайтесь в компанию «ПКО Электрощит», где предоставляют только качественную продукцию с гарантией.
39.Требования, предъявляемые к АВР
• АВР должен срабатывать за минимально возможное после отключения рабочего источника энергии время.
• АВР должен срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокирован, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.
• АВР должен срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с неустранённым коротким замыканием.
Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцессорный блок управления, а также панель индикации и управления.
40.Структурная схема АВР
Схема АВР с двумя вводами
Схема с двумя вводами реализуется на контакторах и автоматических выключателях, общая нагрузка. Основный и резервный ввод, в случае режима работы с приоритетом или два равнозначных ввода.
Режим работы с приоритетом ввода.
При наличии напряжения на обеих вводах, подключается нагрузка к первому вводу (основной ввод), в случае пропадания напряжения на первом вводе переключение на второй ввод. При появлении нормального напряжения на основном вводе, переключение снова на первый ввод.
Режим работы без приоритета.
Авр работает от любого ввода: первого или второго. При пропадании напряжения на рабочем вводе, происходит переключение на другой ввод. Если снова появилось напряжения на прежнем вводе, работа АВР продолжается на текущем вводе.
Два ввода, основной и резервный, переключение при помощи автоматического выключателя с мотор - приводом (мотор-редуктором), общая нагрузка. Исполнение АВР с приоритетом ввода (или без приоритета), в случае пропадания напряжения на рабочем вводе происходит переключение на другой рабочий ввод.
В режиме работы с приоритетом ввода, к примеру "Приоритет 1-го ввода", питание потребителя происходит от первого ввода, в случае пропадания напряжения на основном вводе, переключается нагрузка на 2-ой ввод, при восстановлении напряжения на 1-ом вводе, происходит обратное переключение на 1-ый основной ввод. Раздельные узлы учета по вводам.
Два ввода, АВР на мотор - редукторах, раздельные нагрузки, с секционированием.
При наличии нормального напряжения на обоих вводах нагрузки подключены следующим образом, к Вводу №1 подключена нагрузка Выхода 1, к Вводу №2 подключена нагрузка Выхода 2. В случае пропадания напряжения на первом вводе нагрузка через секционный аппарат получает питание от второго ввода, аналогично происходит работа и при пропадании питания на втором вводе. При восстановлении напряжения на вводах, секционный аппарат отключается.
Два ввода с автоматическими выключателями, АВР на контакторах, раздельная нагрузка, с секционированием. С узлом учета электроэнергии.
Два ввода, раздельная нагрузка на мотор- редукторах.
Два ввода, раздельная нагрузка на контакторах.
Схема АВР с тремя вводами, два ввода и ДЭС.
Вариант схемы автоматического ввода резерва с двумя рабочими вводами, с секционированием, аварийным вводом от ДГУ и двумя выходными линиями.
Вариант схемы автоматического ввода резерва с двумя рабочими вводами, на четырех контакторах, нагрузки раздельные - две выходные линии. При рабочих обеих вводах нагрузка получает питающее напряжение от своего ввода, в случае пропадания напряжение на одном из вводов, подключается питание с другого ввода через соответствующий контактор.
Известная схема АВР, её часто можно встретить на просторах рунета. Но будет работать корректнее, если эту схему доработать и установить кроме KV и KV2, в этом случае будут контролироваться напряжение на обеих вводах. Немаловажный вопрос - тип применяемого реле контроля:
- контроль напряжения на фазах (ЕЛ-11, ЕЛ-12, ЕЛ-13, CM-PVE R9500);
- контроль напряжения на фазах и контроль нулевого провода (РКН-3-14-08, CM-PVE R9400).
41.Виды возобновляемых источников энергии(ВИЭ).Энергетические показатели ВИЭ.
Возобновляемая или регенеративная энергия («Зеленая энергия») — энергия из источников, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из постоянно происходящих в окружающей среде процессов и предоставлении для технического применения. Возобновляемую энергию получают из природных ресурсов, таких как: солнечный свет, ветер, дождь, приливы и геотермальная теплота, которые являются возобновляемыми (пополняются естественным путем).
42.Энергические установки на основе возобновляемых источников энергии и пути его использования
Возобновляемые источники энергии (ВИЭ) – это источники на основе постоянно существующих или периодически возникающих процессов в природе, а также жизненном цикле растительного и животного мира и жизнедеятельности человеческого общества.
Первая часть этого предложения – это классическое, общепризнанное определение. Вторая, подчеркнутая часть, это мое добавление, которое, по сути, расшифровывает понятие “биомасса”.
Постоянно существующие или периодически возникающие процессы в природе – это энергия солнца, энергия ветра, энергия рек и водоемов (потенциальная и кинетическая), энергия приливов и волн, геотермальная высокопотенциальная энергия.
Особым многообразным видом энергии является биомасса, включающая в себя природные и специально выращенные растения и леса (дрова), отходы животноводства, птицеводства, растениеводства, отходы перерабатывающей пищевой промышленности. Особым видом биомассы являются твердые бытовые отходы, сточные воды городов и населенных пунктов, специально выращиваемые водоросли.
Согласно классическим представлениям о возобновляемой энергетике первичных (исходных) возобновляемых источников энергии всего три: энергия Солнца, Энергия земли и энергия орбитального движения нашей планеты в солнечной системе.
В свою очередь энергия Солнца, кроме собственно “солнечной” энергии, частично превращается в рассеянную низкопотенциальную энергию воды, воздуха и поверхностного слоя земли. Часть солнечной энергии “обеспечивает” круговорот воды в природе и является основой гидравлической энергии рек; следующая часть превращается в кинетическую энергию воздуха (ветер), вызывающую также волновое движение водных масс; и последняя часть солнечной энергии через процесс фотосинтеза является основой растительного мира, который, в свою очередь, является пищей травоядных животных и насекомых.
Энергия Земли – геотермальная энергия является результатом процессов в ядре Земли и проявляется в виде парогидротерм с температурой выше 100оС, геотермальной вод с температурой до 100оС, а также через тепло сухих пород толщи земной коры.
Энергия орбитального движения нашей планеты (энергия гравитации) проявляется в виде приливной энергии.
43.Химический состав и физические процессы, происходящие в солнце. Методы расчета мощности солнечных лучей
Со́лнце (астр. ☉) — единственная звезда Солнечной системы, дневное светило. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеориты, кометы и космическая пыль. Масса Солнца составляет 99,866 % от суммарной массы всей Солнечной системы[7]. Солнечное излучение поддерживает жизнь на Земле[8] (свет необходим для начальных стадий фотосинтеза), определяет климат. Солнце состоит из водорода (~73 % от массы и ~92 % от объёма), гелия (~25 % от массы и ~7 % от объёма[9]) и других элементов с меньшей концентрацией: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хрома[10]. На 1 млн атомов водорода приходится 98 000 атомов гелия, 851 атом кислорода, 398 атомов углерода, 123 атома неона, 100 атомов азота, 47 атомов железа, 38 атомов магния, 35 атомов кремния, 16 атомов серы, 4 атома аргона, 3 атома алюминия, по 2 атома никеля, натрия и кальция, а также совсем немного всех прочих элементов. Средняя плотность Солнца составляет 1,4 г/см³. По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000 К. Поэтому Солнце светит почти белым светом, но прямой свет Солнца у поверхности нашей планеты приобретает некоторый жёлтый оттенок из-за более сильного рассеяния и поглощения коротковолновой части спектра атмосферой Земли (при ясном небе, вместе с голубым рассеянным светом от неба, солнечный свет вновь даёт белое освещение).
Солнечный спектр содержит линии ионизированных и нейтральных металлов, а также ионизированного водорода. В нашей галактике Млечный Путь насчитывается свыше 100 млрд звёзд[11]. При этом 85 % звёзд нашей галактики — это звёзды, менее яркие, чем Солнце (в большинстве своём красные карлики). Как и все звёзды главной последовательности, Солнце вырабатывает энергию путём термоядерного синтеза. В случае Солнца подавляющая часть энергии вырабатывается при синтезе гелия из водорода.
Удалённость Солнца от Земли, 149,6 млн км, приблизительно равна астрономической единице, а видимый угловой диаметр при наблюдении с Земли, как и у Луны, — чуть больше полградуса (31—32 минуты). Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот более чем за 200 млн лет[12]. Орбитальная скорость Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу — за 8 земных суток[13]. В настоящее время Солнце находится во внутреннем крае рукава Ориона нашей Галактики, между рукавом Персея и рукавом Стрельца, в так называемом «Местном межзвёздном облаке» — области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность «Местном пузыре» — зоне рассеянного высокотемпературного межзвёздного газа. Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости
44. Расчет мощности солнечных радиации. Виды солнечных радиации
Все фотоэлектрические системы (ФЭС) можно разделить на два типа: автономные и соединенные с электрической сетью. Станции второго типа отдают излишки энергии в сеть, которая служит резервом в случае возникновения внутреннего дефицита энергии.
Автономная система в общем случае состоит из набора солнечных модулей, размещенных на опорной конструкции или на крыше, аккумуляторной батареи (АКБ), контроллера разряда - заряда аккумулятора, соединительных кабелей. Если потребителю необходимо иметь переменное напряжение, то к этому комплекту добавляется инвертор-преобразователь постоянного напряжения в переменное.
Под расчетом ФЭС понимается определение номинальной мощности модулей, их количества, схемы соединения; выбор типа, условий эксплуатации и емкости АКБ; мощностей инвертора и контроллера заряда-разряда; определение параметров соединительных кабелей.
Прежде всего надо определить суммарную мощность всех потребителей, подключаемых одновременно. Мощность каждого из них измеряется в ваттах и указана в паспортах изделий. На этом этапе уже можно выбрать мощность инвертора, которая должна быть не менее, чем в 1,25 раза больше расчетной. Следует иметь в виду, что такой хитрый прибор как компрессорный холодильник в момент запуска потребляет мощность в 7 раз больше паспортной. Номинальный ряд инверторов 150, 300, 500, 800, 1500, 2500, 5000 Вт. Для мощных станций (более 1кВт) напряжение станции выбирается не менее 48 В, т.к. на больших мощностях инверторы лучше работают с более высоких исходных напряжений.
Следующий этап - это определение емкости АКБ. Емкость АКБ выбирается из стандартного ряда емкостей с округлением в сторону, большую расчетной. А расчетная емкость получается простым делением суммарной мощности потребителей на произведение напряжения АКБ на значение г
Виды солнечной радиации
Прямая радиация — солнечная радиация, доходящая до земной поверхности в виде пучка параллельных лучей, исходящих непосредственно от солнечного диска.
Рассеянная радиация — солнечная радиация, которая была рассеяна в атмосфере, поступает на земную поверхность по всему небесного свода. В пасмурные дни она является единственным источником энергии в приземных слоях атмосферы.
Суммарная радиация — совокупность прямой и рассеянной солнечной радиации, поступающей в естественных условиях на земную поверхность. Она зависит от географической широты, высоты над уровнем моря, прозрачности атмосферы и облачности. В горных районах распределение солнечной радиации очень сложный, потому что ее величина определяется также еще экспозицией и крутизной склонов. Распределение суммарной радиации представлено для равнин и предгорий с абсолютными высотами до 600 м.
Количество суммарной радиации уменьшается от экватора к полюсам, поскольку количество радиации, достигла земной поверхности, зависит от угла падения лучей, т.е. от широты местности. На всей территории СССР, кроме некоторых районов Средней Азии, юга Восточной Сибири и Дальнего Востока, зимой преобладает рассеянная радиация, летом — прямая солнечная радиация.
Отношение отраженной радиации к той, что поступила на данную поверхность, называется альбедо. Различные типы поверхности обладают различными показателями отражения солнечной радиации. Например, влажный чернозем имеет альбедо всего 5-10%, снег отражает 80-90% солнечной энергии.
45.Приборы для измерения солнечной радиации. Виды солнечной радиации
Первыми стандартными приборами для измерения прямой солнечной радиации были пиргелиометр Ангстрема, разработанный в Стокгольме, и проточный калориметр Аббота из Смитсонианского института в Вашингтоне. В пиргелиометре Ангстрема приводятся в соответствие тепловые эффекты облучения приемника солнечной энергии и электронагрева затененного элемента. Для измерения уровня электронагрева используются обычные методы электрических измерений. Проточный калориметр Аббота имеет полость, которая поглощает солнечное излучение, а повышение температуры циркуляционной охлаждающей воды пропорционально интенсивности падающего излучения. Пиргелиометр Аббота с серебряным диском является еще одним стандартным прибором, в котором скорость изменения температуры диска приближенно пропорциональна интенсивности падающего излучения. В течение многих лет отмечалось, что американские и европейские измерения радиации не согласуются между собой, и, как указывали различные исследователи во многих странах, расхождение составляло от 2,5 до 6%. В сентябре 1956 г. была установлена новая Международная пиргелиометрическая шкала 1956, которая внесла поправки +1,5% к шкале Ангстрема и -2,0% к смитсонианской шкале Аббота. Впоследствии все приборы калибровались в соответствии с Международной пиргелиометрической шкалой 1956.
Принцип действия большинства пиранометров, которые используются для измерения суммарной радиации, а при затенении от прямых лучей и диффузной радиации, основан на измерении разности температур черных (поглощающих излучение) и белых (отражающих излучение) поверхностей с помощью термоэлементов. Последние дают сигнал в милливольтах, который можно легко контролировать с помощью целого ряда стандартных самопишущих систем. Характерным примером такого типа приборов является пиранометр Эппли. Другой, хорошо известный тип пиранометра - пиранометр Робича - основан на различном расширении биметаллического элемента, тогда как с помощью дистилляционного пиранометра Беллани, в котором спирт конденсируется в калиброванном конденсаторе, измеряется суммарная солнечная радиация за данный промежуток времени. Значительно более простые измерения, которые проводятся во многих местах, связаны с определением продолжительности солнечного сияния, т. е. времени, когда диск Солнца не закрыт облаками или дымкой. Она измеряется с помощью самопишущего прибора Кэмпбелла-Стокса, в котором используется сферическая линза, фокусирующая солнечное излучение на термочувствительной бумаге. При наличии прямой солнечной радиации на бумаге появляется след в виде прожога.
Виды солнечной радиации
Прямая радиация — солнечная радиация, доходящая до земной поверхности в виде пучка параллельных лучей, исходящих непосредственно от солнечного диска.
Рассеянная радиация — солнечная радиация, которая была рассеяна в атмосфере, поступает на земную поверхность по всему небесного свода. В пасмурные дни она является единственным источником энергии в приземных слоях атмосферы.
Суммарная радиация — совокупность прямой и рассеянной солнечной радиации, поступающей в естественных условиях на земную поверхность. Она зависит от географической широты, высоты над уровнем моря, прозрачности атмосферы и облачности. В горных районах распределение солнечной радиации очень сложный, потому что ее величина определяется также еще экспозицией и крутизной склонов. Распределение суммарной радиации представлено для равнин и предгорий с абсолютными высотами до 600 м.
Количество суммарной радиации уменьшается от экватора к полюсам, поскольку количество радиации, достигла земной поверхности, зависит от угла падения лучей, т.е. от широты местности. На всей территории СССР, кроме некоторых районов Средней Азии, юга Восточной Сибири и Дальнего Востока, зимой преобладает рассеянная радиация, летом — прямая солнечная радиация.
Отношение отраженной радиации к той, что поступила на данную поверхность, называется альбедо. Различные типы поверхности обладают различными показателями отражения солнечной радиации. Например, влажный чернозем имеет альбедо всего 5-10%, снег отражает 80-90% солнечной энергии.
46.Фотаэлементы. Вольтамперная характеристика фотоэлементов. Электрическая схема ФЭП
Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.
Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.
Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.
Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.
47.Регионы Казахстана, где имеются ветровые потенциалы. Энергетическая схема ФЭП
Первый Казахстана представляет собой интерактивную карту, позволяющую получать информацию о среднегодовой скорости ветра в выбранной точке и, таким образом, определять перспективность использования энергии ветра в тех или иных местах для получения электроэнергии. Согласно ветровому атласу, более 50 тыс. км² территории Казахстана имеет хороший ветровой потенциал, который теоретически может быть использован для выработки около 900 тыс. ГВт·ч электроэнергии в год.
Наиболее подходящими территориями для развития ветровой электроэнергетики являются: в Алматинской области – Джунгарские ворота и Чуйский коридор, в Акмолинской области – район города Ерментау, на западе Казахстана – Атырауская область и Мангистауская, а также ряд районов на юге Казахстана.
48.Виды и принципы работы ветрогенератора. Солнечные электростанции
Видысетевой ветрогенератор, автономные ветрогенераторы
принципы работы ветрогенераторавтономныеветрогенераторы состоят из генератора, хвостовика, мачты, контроллера, инвертора и аккумуляторной батареи. У классических ветровых установок – 3 лопасти, закреплённых на роторе. Вращаясь ротор генератора создаёт трёхфазный переменный ток, который передаётся на контроллер, далее ток преобразуется в постоянное напряжение и подаётся на аккумуляторную батарею. Ток проходя по аккумуляторам одновременно и подзаряжает их и использует АКБ как проводники электричества. Далее ток подаётся на инвертор, где приводиться в наши привычные показатели: переменный однофазный ток 220В, 50 Гц. Если потребление небольшое то сгенерированного электричества хватает для электроприборов и освещения, если тока с ветряка мало и не хватает - то недостаток покрывается за счёт аккумуляторов. Такой же принцип в автомобилях: когда мы едем, генератор в машине заряжает аккумуляторы и снабжает электричеством все приборы в машине, когда машина останавливается, то аккумулированный ток идёт из АКБ. Ничего сверхсложного в ветряках нет, в них используются все те изобретения которые мы постоянно используем каждый день, не подозревая об этом.
Ветрогенераторы современных конструкций позволяют использовать экономически эффективно энергию ветра. С помощью ветрогенераторов сегодня можно не только поставлять электроэнергию в «сеть» но и решать задачи электроснабжения локальных или островных объектов любой мощности.
Солнечная электростанция — инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.
49. Геотермальные источники энергии. Принцип работы геотермальных электростанции
Геотермальная энергетика — направление энергетики, основанное на производстве электрической энергии за счёт энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы.
В вулканических районах циркулирующая вода перегревается выше температуры кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.
Принцип работы геотермальных электростанции
сновным блоком ГТЭС является энергоблок, в который включены газотурбинная установка (при необходимости с редуктором) и синхронный генератор с системой возбуждения.
На двигателе предусмотрены системы запуска, защиты и сигнализации, противообледенения, а также в комплект входят система всасывания и очистки воздуха, блок маслоснабжения, автоматики, пожаротушения и вентиляции, укрытия двигателя. Атмосферный воздух через входное воздухоочистительное устройство и камеру всасывания поступает в двигатель. Воздухоочистительное устройство предназначено для очистки циклового воздуха газотурбинной установки от капельной влаги, снега, пылевых частиц, вызывающих эрозийный износ лопаточного аппарата компрессора газотурбинной установки.
В компрессоре двигателя воздух сжимается и поступает в камеру сгорания, где в потоке воздуха сжигается топливо, поступающее через форсунки.
Далее горячие газы поступают на лопатки турбины, где тепловая энергия потока превращается в механическую энергию вращения роторов турбин.
Мощность, полученная на валу свободной турбины, расходуется на привод турбогенератора, который вырабатывает электроэнергию. Турбогенератор предназначен для выработки электроэнергии при работе в маневренных режимах в агрегате с газовой турбиной. Крутящий момент от двигателя передается на ротор генератора. При вращении ротора возникает магнитный момент, создающий в обмотках статора электрический ток. С помощью системы возбуждения генератора поддерживается постоянство напряжения на всех режимах работы генератора.
Отработавшие в двигателе газы через выхлопное устройство и шумоглушитель уходят в дымовую трубу. Если предусмотрена утилизация тепла выхлопных газов, то после выхлопного устройства отработанные газы поступают на утилизационный теплообменник. Вместо утилизационного теплообменника в цепочке может находится котел-утилизатор.
При наличии котла-утилизатора необходимахимводоочистка для приготовления химически очищенной воды с целью восполнения пароводянных потерь на станции и невозврата конденсата с производства.
Система автоматического управления ГТЭС обеспечивает полную автоматизацию пуска станции, синхронизацию электрогенератора, а также контроль необходимого числа параметров в эксплуатации.
Система подготовки топливного газа включает в себя блоки очистки газа от мехпримесей, капельной жидкости и сероводорода.
50. Энергия океанических и морских волн пути их использования. Энергетические установки на их основе
Энергетические установки на их основе
Эне́ргия волн океана — энергия, переносимая волнами на поверхности океана. Может использоваться для совершения полезной работы — генерации электроэнергии, опреснения воды и перекачки воды в резервуары. Энергия волн — неисчерпаемый источник энергии.
Мощность волнения оценивают в кВт на погонный метр, то есть в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает гораздо большей удельной мощностью. Так, средняя мощность волнения морей и океанов, как правило, превышает 15 кВт/м. При высоте волн в 2 м мощность достигает 80 кВт/м. То есть, при освоении поверхности океанов не может быть нехватки энергии. Конечно, в механическую и электрическую энергию можно использовать только часть мощности волнения, но для воды коэффициент преобразования выше, чем для воздуха — до 85 %.
Волновая энергия представляет собой сконцентрированную энергию ветра и, в конечном итоге, солнечной энергии. Мощность, полученная от волнения всех океанов планеты, не может быть больше мощности, получаемой от Солнца. Но удельная мощность электрогенераторов, работающих от волн, может быть гораздо большей, чем для других альтернативных источников энергии.
Несмотря на схожую природу, энергию волн принято отличать от энергии приливов и океанских течений. Выработка электроэнергии с использованием энергии волн не является распространённой практикой, в настоящее время в этой сфере проводятся только экспериментальные исследования.
Представляет интерес и использование энергии волн для движения судов (движители волновые). Удельная мощность волнения превышает удельную мощность ветра, т. е. размеры волнового привода могут быть существенно меньше, чем парусное оснащение. Качка судна, как правило, превышает по своей мощности мощность необходимой силовой установки. Волнение на море бывает даже в штиль. Волнение — это колебательный процесс. В отличие от ветра, который может дуть и против движения судна, волнение можно использовать при любом направлении движения фронта волн относительно судна. При шторме волновой привод может обеспечить судну достаточно энергии для борьбы со стихией.
Энергия морских волн значительно выше энергии приливов. Приливное рассеяние (трение, вызванное Луной) составляет порядка 2,5 ТВт. Энергия волн значительно выше и может быть использована значительно шире, чем приливная. Страны с большой протяжённостью побережья и постоянными сильными ветрами, такие как Великобритания и Ирландия, могут генерировать до 5 % требуемой электроэнергии за счёт энергии волн. В частности в Великобритании построен волновой генератор Oyster. Избыток генерируемой энергии (общая проблема всех непостоянных источников энергии) может быть использован для выработки водорода или алюминия.
Основная задача получения электроэнергии из морских волн — преобразование движения вверх-вниз во вращательное для передачи непосредственно на вал электрогенератора с минимальным количеством промежуточных преобразований, при этом желательно, чтобы большая часть оборудования находилась на суше для простоты обслуживания. Недавно выдан Российский патент № 82283 на механизм, позволяющий преобразовывать движения качания поплавка на волнах с любой амплитудой во вращение[источник не указан 1192 дня]. Выходной вал устройства вращается как от движения поплавка вниз, так и вверх. Механизм, находящийся на берегу, соединяется с поплавком штангой. Кроме того, механизмы можно секционировать на общий вал для получения большей суммарной мощности.