К задвижкам относят запорные устройства, в которых проход перекрывается поступательным перемещением затвора в направлении, перпендикулярном движению потока транспортируемой среды. Задвижки широко применяют для перекрытия потоков газообразных или жидких сред в трубопроводах с диаметрами условных проходов от 50 до 2000 мм при рабочих давлениях 4-200 кгс/см2 и температурах среды до 450 °С. Иногда задвижки изготовляют и на более высокие давления.
В газовой промышленности задвижки применяют при оборудовании устья скважин, на промысловых сборных пунктах, магистральных и распределительных газопроводах, трубопроводах компрессорных и газораспределительных станций.
В сравнении с другими видами запорной арматуры задвижки имеют следующие преимущества: незначительное гидравлическое сопротивление при полностью открытом проходе; отсутствие поворотов потока рабочей среды; возможность применения для перекрытия потоков среды большой вязкости; простота обслуживания; относительно небольшая строительная длина; возможность подачи среды в любом направлении.
К недостаткам задвижек следует отнести: невозможность применения для сред с кристаллизующимися включениями, небольшой допускаемый перепад давлений на затворе (по сравнению с вентилями), невысокая скорость срабатывания затвора, возможность получения гидравлического удара в конце хода, большая высота, трудности ремонта изношенных уплотнительных поверхностей затвора при эксплуатации.
Рабочая полость задвижки (рис. 13.3.), в которую подается транспортируемая под давлением среда, образуется корпусом 3 и верхней крышкой 7. Герметизируется эта полость при помощи прокладки 5, которая прижимается крышкой к корпусу. Корпус задвижки представляет собой цельную, литую или сварную конструкцию. Как правило, он имеет высоту, равную двум диаметрам перекрываемого прохода. На корпусе, симметрично оси шпинделя, располагаются два патрубка, которыми задвижка присоединяется к трубопроводу. Присоединение может быть либо сварным, либо фланцевым.
Внутри корпуса имеются два кольцевых седла 1 и затвор 2, который в данном случае представляет собой клин с наплавленными уплотнительными кольцевыми поверхностями. В закрытом положении уплотнительные поверхности затвора прижимаются к рабочим поверхностям колец корпуса от привода.
Рис.13.3. Задвижка:
1-седло; 2-затвор; 3-корпус; 4-ходовая гайка; 5-уплотнительная прокладка; 6-шпиндель; 7-верхняя крышка; 8-кольцевая прокладка; 9-сальник; 10-нажимная втулка; 11-маховик.
Иногда уплотнительные поверхности получают непосредственно при обработке корпуса. Однако такое конструктивное решение вряд ли может быть приемлемым для всех задвижек, так как при износе этих поверхностей проще и дешевле заменить сменные седла, чем заново обработать корпус при эксплуатации. Уплотнительные поверхности седел и затвора с целью уменьшения износа и усилий трения, возникающих при перемещении затвора, обычно изготавливают из материалов, отличающихся от материала корпуса, путем запрессовки, что позволяет их менять в процессе эксплуатации.
В верхней части затвора 2 закреплена ходовая гайка, в которую ввинчен шпиндель 6, жестко соединенный с маховиком. Система винт-гайка служит для преобразования вращательного движения маховика (при открывании или закрывании задвижки) в поступательное перемещение затвора.
При перекрытии прохода от одностороннего давления среды возникают довольно значительные усилия, действующие на затвор, которые передаются на уплотнительные поверхности седла. Величина этих усилий зависит от перепада давлений рабочей среды в трубопроводе до и после задвижки и от величины удельных давлений на уплотнительных поверхностях затвора и седел, которую надо обеспечить для герметичного перекрытия потока рабочей среды при заданном рабочем давлении в трубопроводе. Система винт-гайка - наиболее рациональная, так как она позволяет получить компактный и простой по конструкции привод с поступательным движением выходного элемента. Она также позволяет получить поступательное движение привода с большим усилием в направлении хода. Кроме того, поскольку такая конструкция является самотормозящей, она практически исключает возможность самопроизвольного перемещения затвора при отключении привода, что весьма важно для запорной арматуры при эксплуатации.
Недостатком этой системы в данном конкретном случае следует считать то, что пара винт-гайка находится в среде, протекающей через рабочую полость задвижки.
Среда смывает смазку, отсюда повышенный износ пары. Кроме того, такую конструкцию можно применять не на всех средах.
Обычно затвор помещают целиком в рабочей среде, даже тогда, когда проход полностью открыт. Уплотнение в месте выхода шпинделя из рабочей полости задвижки обеспечивается по диаметру шпинделя сальниковым устройством 9, препятствующим утечке рабочей среды в атмосферу.
Конструкция сальникового устройства аналогична конструкциям в вентилях' и регулирующих клапанах. Набивка сальника, как правило, изготовленная из пропитанного в целях снижения коэффициента трения графитом асбестового шнура, поджимается при помощи нажимной втулки 10. Корпус сальника крепится к верхней крышке 7. Место разъема уплотняется кольцевой прокладкой 8.
Существуют самые разнообразные конструкции задвижек. Их пытаются классифицировать по различным признакам, связанным с конкретными условиями эксплуатации, по химическому составу рабочей среды и ее параметрам. Классифицируют задвижки по величине рабочих давлений, температурам рабочих сред, типу привода и т. д.
Классификации такого рода являются неполными, так как они не учитывают особенностей конструкций, позволяющих, помимо работы в определенных средах, отвечать ряду требований, предъявляемых к задвижкам в эксплуатации, и помещают в один класс множество совершенно непохожих по своим данным типов задвижек.
Наиболее целесообразной является классификация задвижек по конструкции затвора. По этому признаку многочисленные конструкции задвижек могут быть объединены по основным типам: клиновые и параллельные задвижки.
По этому же признаку клиновые задвижки могут быть с цельным, упругим или составным клином.
Параллельные задвижки также можно подразделить на однодисковые и двухдисковые.
В ряде (конструкций задвижек, предназначенных для работы при высоких перепадах давления на затворе, для уменьшения усилий, необходимых для открывания и закрывания прохода, площадь прохода выполняют несколько меньшей площади сечения входных патрубков. По этому признаку задвижки могут быть классифицированы на полнопроходные (диаметр прохода задвижки равен диаметру трубопровода) и с суженным проходом. В зависимости от конструкции системы винт-гайка и ее расположения (в среде или вне среды) задвижки могут быть с выдвижным и с невыдвижным шпинделем.
Клиновые задвижки
К клиновым относятся задвижки, затвор которых имеет вид плоского клина (рис. 13.4.-13.5.).
В клиновых задвижках седла и их уплотнительные поверхности параллельны уплотнительным поверхностям затвора и расположены под некоторым углом к направлению перемещения затвора. Затвор в задвижках этого типа обычно называют «клином». Преимущества таких задвижек — повышенная герметичность прохода в закрытом положении, а также относительно небольшая величина усилия, необходимого для обеспечения уплотнения.
Так как угол между направлением усилия привода и усилиями, действующими на уплотнительные поверхности затвора, близок к 90°, то даже небольшая сила, передаваемая шпинделем, может вызвать значительные усилия в уплотнении.
К недостаткам задвижек этого типа можно отнести необходимость применения направляющих для перемещения затвора, повышенный износ уплотнительных поверхностей затвора, а также технологические трудности получения герметичности в затворе.
Рис.3.14. Клиновая задвижка:
1- шпиндель с длинной резьбой; 2- промежуточное кольцо и графитовое уплотнение для PN 2,5 МПа и выше; для PN 1,6 МПа только графитовое уплотнение. Двойное графитовое уплотнение - под заказ; 3- уплотнение из гофрированной стали для задвижек класса 1,6 МПа, спиральный уплотнитель для класса 2,5 — 4,0 МПа и 8,0 — 10,0 МПа и соединительное кольцо для 12,5 МПа и выше; 4- направляющие в корпусе задвижки обеспечивают центрирование клина при открытии и закрытии; 5- гибкий клин позволяет компенсировать искажение поверхности седла и деформацию корпуса, вызванные гидроударом в трубопроводе; 6-конструкция шпинделя предотвращает выталкивание; 7-ходовая гайка из мягких сплавов, позволяет в случае аварийной ситуации предотвратить излом штока в месте соединения с клином за счет срыва резьбы гайки;8-заменяемый приварной уплотнитель включен в стандартную конструкцию, прикручивающийся уплотнитель - под заказ.
Рис.13.5. Задвижка клиновая с преднапряженным уплотнением:
1-многочастевое упорное кольцо надежно удерживает внутреннее давление;2-упорное кольцо предотвращает деформацию уплотнителя; 3-вставка из нержавеющей стали обеспечивает бесшумность и коррозионную сопротивляемость; 4-уплотнение из ковкой стали обеспечивает большую площадь контакта, повышая надежность уплотнения; 5-герметичный шток; 6-гибкий клин позволяет компенсировать искажение поверхности седа и деформацию корпуса, вызванные гидроударом в трубопроводе; 7-уплотнительное кольцо седла с напылением из стеллита №6 является стандартной конструкцией.
Задвижки с цельным клином
Примером конструкции задвижки этого типа может служить задвижка с выдвижным шпинделем (рис. 13.6). Она состоит из литого корпуса 1, в который ввинчены уплотнительные седла 2. Как правило, их изготавливают из легированных, износостойких сортов стали. Вместе с корпусом отлиты, а затем механически обработаны направляющие 3 для фиксации направления перемещения затвора (клина).
Рис. 13.6.Полнопроходная задвижка с цельным клином:
1 – корпус; 2 – седло; 3 – направляющая движения клина; 4 – клин; 5 – шпиндель; 6 – верхняя крышка; 7 – шпилька; 8 – уплотнительная прокладка; 9 – направляющая втулка; 10 – сальник; 11 – нажимной фланец; 12 – бугель; 13 – гайка; 14- маховик.
Клин 4 имеет две кольцевые уплотнительные поверхности и шарнирно через сферическую опору подвешен к шпинделю 5. Верхняя крышка 6 соединяется с корпусом посредством болтов или шпилек 7. Для центровки крышки по отношению к корпусу в последней имеется кольцевой выступ, который входит в проточку корпуса. Уплотнение между крышкой и корпусом обеспечивается прокладкой 8, которая закладывается в проточку корпуса. Для предотвращения перекосов шпинделя в верхнюю часть крышки запрессовывается направляющая втулка 9.
Сальниковое устройство состоит из проточки в корпусе, куда помещается набивка, кольцевой нажимной втулки и фланца 11. Сальниковое устройство уплотняется нажимным фланцем 11.
На крышке укреплен бугель 12, на котором расположена ходовая гайка 13, обычно изготавливаемая из антифрикционных сплавов. Маховик жестко соединен с ходовой гайкой.
При вращении маховика гайка заставляет шпиндель и связанный с ним клин подниматься или опускаться. В конструкции соединения затвора (клина) со шпинделем (см. рис. 13.6.) клин может перемещаться в направлении, перпендикулярном оси шпинделя. При этом в конечном положении клин свободно входит в пространство между седлами даже при несовпадении оси шпинделя с осью симметрии затвора. Применение подобного соединения несколько удешевляет изготовление задвижек и облегчает их монтаж после ремонта в условиях эксплуатации.
Задвижку с цельным клином широко применяют, так как ее конструкция проста и, следовательно, имеет небольшую стоимость в изготовлении. Цельный клин, представляющий собой весьма жесткую конструкцию, достаточно надежен в рабочих условиях и может быть применен для перекрытия потоков при довольно больших перепадах давления на затворе.
Однако нельзя не отметить ряд существенных недостатков этой конструкции, к которым относятся: повышенный износ уплотнительных поверхностей, потребность в индивидуальной пригонке седел и клина при сборке для обеспечения герметичности (это полностью исключает взаимозаменяемость клина и седел и усложняет ремонт), возможность заедания клина в закрытом положении в результате износа, коррозии или под действием температуры (при этом открыть задвижку иногда бывает невозможно); потребность в приводах с большим пусковым моментом.
Чтобы избежать заедания, уплотнительные поверхности клина и седел изготавливают из разнородных материалов.
Задвижки с цельным клином выпускают как с выдвижным, так и с невыдвижным шпинделем.
Задвижки с упругим клином
Конструкция затвора задвижек этого типа обеспечивает лучшее уплотнение прохода в закрытом положении без индивидуальной технологической подгонки, так как затвор выполнен в виде разрезанного (или полуразрезанного) клина, обе части которого связаны между собой упругим (пружинящим) элементом. Под действием усилия прижатия, которое передается через шпиндель, в закрытом положении последний может изгибаться в пределах упругих деформаций, обеспечивая плотное прилегание обоих уплотнительных поверхностей клина к седлам.
Такая конструкция затвора весьма перспективна, так как, имея преимущества затвора с цельным клином, задвижка с упругим клином исключает ряд ее недостатков. В задвижке с упругим клином взаимозаменяемы затворы и повышена надежность при высоких температурах (вследствие уменьшения опасности неравномерного теплового расширения, приводящего к заклиниванию затвора). Однако опасность заклинивания в закрытом положении все-таки полностью не устранена.
Рис. 13.7. Задвижка с суженным проходом и упругим клином:
1- корпус; 2-седло; 3-затвор; 4-стойка; 5-шпиндель; 6-верхняя крышка; 7-ходовая гайка; 8-ребро.
Рис 13.8. Задвижка с упругим клином и выдвижным
шпинделем:
1-корпус; 2-седло; 3-затвор; 4-шпиндель; 5-ходовая гайка; 6-маховик; 7-лин; 8-стойка
В задвижке с упругим клином (рис. 13.7) затвор 3 представляет собой разрезанный клин с упругим ребром 8, которое позволяет уплотнительным поверхностям клина поворачиваться относительно друг друга на некоторый угол, что обеспечивает лучшее прилегание к уплотнительным поверхностям седел. Эта особенность упругого клина исключает необходимость индивидуальной технологической подгонки уплотнения и уменьшает опасность заклинивания. Задвижки этого типа изготовляют как с невыдвижным шпинделем (рис. 3.7.), так и с выдвижным (рис. 13.8).
Усилие приводов при открывании таких задвижек несколько больше, чем у задвижек с цельным клином, зато герметичность затвора намного выше.