Сеть управления телекоммуникациями (TMN — Telecommunications Management Network) определяется системой стандартов на эту сеть. Поддержание правильного функционирования — это обеспечение выполнения основных задач, поставленных перед сетью, в нормальных условиях и в ситуациях, когда меняются характеристики сети, — например, когда увеличивается поступающая пользовательская нагрузка (трафик).
Техническое обслуживание подразумевает работу по восстановлению работоспособности или характеристик сети, когда нарушается работа элементов, входящих в саму сеть (отказы оборудования или программы).
Исторически создание концепции телекоммуникационной сети управления телекоммуникациями (TMN) обусловлено тем, что развитие и расширение сетей катастрофически увеличивало затраты на их обслуживание. Единственный путь уменьшения таких затрат — централизация технического обслуживания. Однако это оказалось трудной задачей. Все выгоды от централизации сводились "к нулю" по следующим причинам.
1. Неоднородность сетей электросвязи.
2. Разнообразие применяемого оборудования и услуг.
3. Важность последствий отказа сети связи.
4. Интернациональность сетей связи
Поэтому система технического обслуживания должна быть стандартной в международных масштабах.
Интернет полностью меняет то, как мы работаем, живем, развлекаемся и учимся. Однако наше общество только начинает осознавать возможности интернета. Но вместе с колоссальным ростом популярности этой технологии возникает беспрецедентная угроза разглашения персональных данных, критически важных корпоративных ресурсов, государственных тайн и т.д. Каждый день хакеры подвергают угрозе эти ресурсы, пытаясь получить к ним доступ с помощью специальных атак. Эти атаки, которые будут описаны ниже, становятся все более изощренными и простыми в исполнении. Этому способствуют два основных фактора.
Во-первых, это повсеместное проникновение интернета. Сегодня к этой сети подключены миллионы устройств. И поэтому вероятность доступа хакеров к уязвимым устройствам постоянно возрастает. Кроме того, широкое распространение интернета позволяет хакерам обмениваться информацией в глобальном масштабе. Простой поиск по ключевым словам типа “хакер”, “взлом”, “hack”, “crack” или “phreak” даст вам тысячи сайтов, на многих из которых можно найти вредоносные коды и способы их использования.
Во-вторых, это всеобщее распространение простых в использовании операционных систем и сред разработки. Этот фактор резко снижает уровень знаний и навыков, которые необходимы хакеру. Раньше хакер должен был обладать хорошими навыками программирования, чтобы создавать и распространять простые в использовании приложения. Теперь чтобы получить доступ к хакерскому средству, нужно просто знать IP-адрес нужного сайта, а для проведения атаки достаточно щелкнуть мышкой.
Существуют четыре основных категории атак:
- атаки доступа;
- атаки модификации;
- атаки на отказ в обслуживании;
- атаки на отказ от обязательств.
Атака доступа - это попытка получения злоумышленником информации, для просмотра которой у него нет разрешений. Осуществление такой атаки возможно везде, где существует информация и средства для ее передачи (рис. 2.1). Атака доступа направлена на нарушение конфиденциальности информации.
Смягчить угрозу сниффинга пакетов можно с помощью следующих средств:
Аутентификация – Сильные средства аутентификации являются первым способом защиты от сниффинга пакетов. Под “сильным” мы понимаем такой метод аутентификации, который трудно обойти. Примером такой аутентификации являются однократные пароли (OTP – One-Time Passwords). ОТР – это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Типичным примером двухфакторной аутентификации является работа обычного банкомата, который опознает вас, во-первых, по вашей пластиковой карточке и, во-вторых, по вводимому вами ПИН-коду. Для аутентификации в системе ОТР также требуется ПИН-код и ваша личная карточка. Под “карточкой” (token) понимается аппаратное или программное средство, генерирующее (по случайному принципу) уникальный одномоментный однократный пароль. Если хакер узнает этот пароль с помощью сниффера, эта информация будет бесполезной, потому что в этот момент пароль уже будет использован и выведен из употребления. Заметим, что этот способ борьбы со сниффингом эффективен только для борьбы с перехватом паролей. Снифферы, перехватывающие другую информацию (например, сообщения электронной почты), не теряют своей эффективности.
Коммутируемая инфраструктура – Еще одним способом борьбы со сниффингом пакетов в вашей сетевой среде является создание коммутируемой инфраструктуры. Если, к примеру, во всей организации используется коммутируемый Ethernet, хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктуры не ликвидирует угрозу сниффинга, но заметно снижает ее остроту.
Анти-снифферы – Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Так называемые “анти-снифферы” измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать “лишний” трафик. Одно из таких средств, поставляемых компанией LOpht Heavy Industries, называется AntiSniff.
Криптография – Самый эффективный способ борьбы со сниффингом пакетов не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, это значит, что хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов). Криптография Cisco на сетевом уровне базируется на протоколе IPSec. IPSec представляет собой стандартный метод защищенной связи между устройствами с помощью протокола IP. К прочим криптографическим протоколам сетевого управления относятся протоколы SSH (Secure Shell) и SSL (Secure Socket Layer).
Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Заметим, что если хакер получит информацию о криптографической сессии (например, ключ сессии), это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.
Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола. В качестве примера можно рассмотреть недопущение хакерского доступа к порту telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.
DoS-атаки обычно направлены против компьютерных систем и сетей, но иногда их целью являются документы на бумажных носителях.
Угроза атак типа DoS может снижаться тремя способами:
Функции анти-спуфинга – правильная конфигурация функций анти-спуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции, как минимум, должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.
Функции анти-DoS – правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах может ограничить эффективность атак. Эти функции часто ограничивают число полуоткрытых каналов в любой момент времени.
Ограничение объема трафика (traffic rate limiting) – организация может попросить провайдера (ISP) ограничить объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего по вашей сети. Обычным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D)DoS часто используют ICMP.