Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Атомарные лазеры (Не-Ne-лазер)




Активной частицей в этом, наиболее распространенном классе газовых лазеров является нейтральный атом, инверсная заселенность в котором создается между двумя, как правило, достаточно высоко расположенными электронными уровнями. Наиболее яркий

едставитель этого класса Не -Ne-лазер, предложенный в 1961 г. А. Джаваном, явился первым газовым лазером. Несмотря на то, что в настоящее время описаны десятки газовых лазеров, он остается наиболее простым, доступным и распространенным в практической деятельности лазерным устройством.

Рабочей частицей в Не Ne-лазере является атом неона (строго говоря, более правильно назвать его неоновым лазером). Атом гелия играет вспомогательную роль, обеспечивая эффективное заселение верхнего уровня и возможность генерации в непрерывном режиме. Принцип работы Не-Ne-лазера иллюстрируется упрощенной схемой уровней Не и Ne

(рис. 36). Так же как и в случае СО2-лазера, в основе создания инверсной заселенности уровней атома Ne лежит высокая эффективность резонансных процессов передачи возбуждения в результате неупругих столкновений частиц между собой. В Не -Ne-лазере верхние лазерные уровни Ne Зs и 2s близки к метастабильным уровням Не 2 S и 2 S (дефицит энергии равен 300 см , что соответствует поступательной энергии ~ 3(2 М Т при температуре 300 К). Эти метастабильные уровни Не весьма эффективно заселяются электронным ударом в процессе

(1.46)

а затем передают свою энергию атомам Ne в процессе

He(2 S ,2 S )+Ne He( S )+Ne(3s ,2s ) (1.47)

В атоме Ne р-состояния имеют более короткое время жизни относительно спонтанных переходов на уровень 1S, чем s-состояние. Поэтому между s- и р-состояниями может существовать инверсная заселенность, приводящая к возникновению генерации с длинами волн 0,63, 1,15 и 3,39 мкм.

Поддержанию генерации на указанных переходах может существенно мешать высокая заселенность метастабильного уровня Ne — 1s, приводящего к заселению нижнего лазерного уровня 2р электронным ударом

Ne(ls)+ е Ne(2p )+ е

      кПа мм   10:1
3s 3.39 5:1 0.4-0.6 0,1 0.3
3s 0.63 5:1 0.4-0.6 0,05 0.1
2s 1.15 10:1 1.2-2 0,03 0.05

Эффективное расселение уровня 1s происходит при столкновении атома Ne со стенками разрядной трубки. Именно необходимость расселения уровня 1s и уменьшения вероятности процесса (1.48) ограничивает сверху значение произведения давления рабочей смеси р и диаметра разрядной трубки D , на уровне pD =5 — 15торр мм, а также ток разряда на уровне 25-50мА. Оптимальные для генерации различных лазерных переходов составы смесей, параметров pD а также типичные значения коэффициентов усиления среды, удельных съемов излучения и электрооптического КПД приведены в табл. 3. В тех случаях, когда необходимо предусмотреть возможность переключения длин волн генерации одного и того же лазера, параметры его газоразрядной трубки выбирают в диапазоне D ~ 5 — 10 мм, р : p = 5:15, р=0,1-0,3 кПа, а резонатор снабжают сменными зеркалами, рассчитанными на эффективное отражение излучения с нужной длиной волны.

Как видно из табл. 3, Не Ne-лазеры не отличаются высокой мощностью излучения (типичный диапазон — десятки мВт) и имеют весьма низкий КПД (~0,1%). Это обстоятельство объясняется низким значением квантового КПД ( 5%), а также упомянутыми выше ограничениями на диаметр разрядной трубки, давление рабочей смеси и ток разряда.

Низкие уровни мощности излучения позволили упростить и сделать максимально надежной конструкцию Не -Ne-лазера. Аналогично СО2-лазеру, она состоит из сменной газоразрядной трубки с наклоненными под углом Брюстера торцевыми пластинками и впаянными электродами и резонатора, состоящего из глухого и выходного зеркал. При необходимости изменения длины излучения выходное зеркало делают сменным.

Несмотря на низкие энергетические характеристики, не позволяющие использовать He- Ne-лазер в термической и селективной технологии, он является самым распространенным газовым лазером. Причина такой популярности обусловлена прежде всего его уникальными спектральными характеристиками. Благодаря низкому давлению газа, ширина линии излучения Не-Ne-лазера определяется эффектом Доплера и составляет ~10 Гц. При 9 характерных длинах лазера (~10 см) расстояние между собственными частотами резонатора составит также ~10 Гц. Поэтому Не Ne-лазер позволяет осуществлять одночастотную 9 генерацию на одной продольной моде и обладает исключительно высокой монохроматичностью и стабильностью излучения ( ). Эти качества, а также возможность генерации в видимом диапазоне длин волн делают Не-Хе-лазер незаменимым элементом во многих оптических устройствах, предназначенных для измерения расстояний, контроля размеров, лазерной связи и научных исследований. Очень часто Не -Ne-лазер используется в качестве вспомогательного оборудования для юстировки и визуализации положения луча в других лазерных системах. Большой интерес вызывают появившиеся в последнее время сведения о возможности эффективного использования Не-Ne-лазеров в медицине.

Среди других лазеров на нейтральных атомах можно назвать Не — Хе-лазер, излучение которого лежит в ближнем ИК-диапазоне (3,5 мкм) и имеет мощность ~10 мВт.

Ионные лазеры (Ar-лазер)

Получение генерации возможно не только при переходах между уровнями нейтральных атомов, но и ионов. В настоящее время получена генерация на переходах между уровнями ионов более 30 химических элементов. Наибольшее распространение среди ионных лазеров получил аргоновый лазер, использующий переходы между электронными состояниями иона Ar+, отвечающие видимой области спектра ( = 0,455 — 0,515 мкм).

Полное число уровней и процессов, участвующих в создании инверсной заселенности в ионе Ar+, весьма велико. Поэтому рассмотрим принцип работы аргонового лазера с помощью упрощенной схемы (рис. 37), уровни Зp и Зр 4s которой включают в себя все уровни конфигураций 4р и 4s. Возбуждение верхних лазерных уровней Аr+ происходит в газовом разряде ступенчато в результате двух столкновений атомов с электронами. Первое столкновение ионизирует атом, второе — возбуждает его:

Аг + е Аг (Зр ) +2е, (1.49)

Аr (Зр ) + е Аг (3p 4p)+е,

 

 

Радиационное время жизни верхних лазерных уровней (~10 с) существенно больше, чем нижних (~10 с). Именно это обстоятельство и позволяет создать стационарную инверсию между целым рядом уровней указанных конфигураций.

Образование возбужденных ионов происходит при столкновении электронов с ионами в основном состоянии. Поэтому плотность частиц на верхнем лазерном уровне

N = k n n =z; = k n ~j (1.50)

где k — константа возбуждения; , — радиационное время жизни верхнего лазерного уровня. Вблизи порога мощность генерации W~K ~N ~j . Точный расчет с учетом конкретных констант процессов дает следующую взаимосвязь удельной объемной мощности излучения W/V (Вт/см ) с плотностью тока j(А/см ):

W/V=10 j (1.51)

Такой характер зависимости мощности излучения от тока имеет место лишь в случае отсутствия полной ионизации газа. При оптимальных значениях давления газа 0,5 торр и диаметрах разрядных трубок 0,1-1 см величина W/V может достигать значения 1-10 Втlсм . Хотя в литературе описаны образцы с мощностью излучения до 150Вт, мощность промышленных Ar-лазеров, как правило, не превьппает десятков Вт. При квантовом КПД 7% полный КПД Ar-лазеров не превышает обычно 0,1%.

Как видно из рис. 37, высокие удельные параметры Ar-лазера возможны лишь при высоких плотностях токов, т. е. при использовании дуговых разрядов. Это обстоятельство сказывается на конструкции ионных лазеров. Для обеспечения однородного сильноточного разряда разрядную трубку приходится делать в виде достаточного тонкого капилляра. Иногда для достижения максимальной концентрации заряженных частиц разрядный капилляр помещают в продольное магнитное поле. Ряд проблем возникает в Ar-лазерах из-за эффекта переноса ионов Ar от анода к катоду. В результате этого вдоль разрядной трубки образуются большие градиенты давления и для ликвидации их приэлектродные области разряда приходится соединять длинной обводной трубкой, по которой газ возвращается обратно в прианодную зону. Однако основная проблема создания мощных Ar-лазеров заключается в преодолении высоких тепловых нагрузок. Для получения излучения мощностью 10 Вт необходимо подвести к трубке 10 кВт электрической энергии. Температура ионов в разряде составляет при этом 3000 К. Это приводит к серьезному усложнению конструкции и сокращению ресурсных характеристик ионных лазеров.

Несмотря на ограниченную мощность, излучение Ar-лазера можно сфокусировать в пятно с плотностью мощности Вт/см . Это позволяет с успехом использовать их в промышленности, в частности для скрайбирования тонких пленок в микросхемах. Широкое применение Ar-лазер находит также в медицине и научных исследованиях.

Среди других наиболее интересных для практических целей ионных лазеров необходимо назвать криптоновый лазер, излучающий мощность ~100мВт в красном и желтом участках видимого спектра, а также гелий-кадмиевый лазер, линии излучения которого 0,417 и 0,325 мкм лежат в видимой и ультрафиолетовой частях спектра. Эти лазеры в основном представляют интерес для научных исследований, а также для биологии и медицины.





Поделиться с друзьями:


Дата добавления: 2016-03-26; Мы поможем в написании ваших работ!; просмотров: 1363 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2318 - | 2046 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.