Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Энергетика и направленность химических процессов (элементы химической термодинамики)




Эти вопросы входят в круг задач науки химической термодинамики, которая изучает взаимные превращения различных видов энергии в зависимости от условий протекания процесса, устанавливает количественные законы этих переходов, а также направление и пределы самопроизвольного протекания химических реакций при заданных условиях.

Основные понятия и определения

Объект изучения в термодинамике – система. Под системой понимается тело или группа тел, состоящих из большого числа частиц и мысленно (или фактически) обособленных от окружающей среды. Различают гомогенные системы, они состоят из одной фазы; и гетерогенные, они состоят из двух или нескольких фаз.

Фаза – часть термодинамической системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела.

Кроме того, системы делят на:

· открытые – те, которые обмениваются с окружающей средой и веществом и энергией;

· закрытые – те, которые обмениваются с окружающей средой энергией;

· изолированные – те, которые не обмениваются с окружающей средой ни веществом, ни энергией.

Переход системы из одного состояния в другое называется процессом.

Химическая система – частный случай термодинамической системы. Она может быть однофазной(гомогенной) или многофазной(гетерогенной). Пример: истинный раствор любой соли (NaCl, CuSO4) – гомогенная система; насыщенный раствор любой соли с кристаллами (NaCl, CuSO4) – гетерогенная система.

Для полного описания системы достаточно знать некоторое минимальное количество термодинамических свойств. Это параметры состояния системы: t, P, V, концентрация. Они связаны между собойфункцией состояния. В общем случае функцию состояния можно записать: f(t, P, V, n1, …, ni) = 0. Частный случай функции состояния: PV = nRT – уравнение состояния n молей идеального газа.

Функцией состояния называется параметрическое изменение, которое зависит от начального и конечного состояния системы и не зависит от пути процесса. В соответствии с определением изменение функции состояния не зависит от пути и способа перехода системы из одного состояния в другое и определяется разностью значений функций в этих состояниях, т.е.:

 

Δf = fкон. – fнач. = f 2 – f 1.

К важнейшим функциям состояния, характеризующим химические системы, относятся:

- внутренняя энергия, U;

- энтальпия, Н;

- энтропия, S;

- свободная энергия Гиббса (изобарно-изотермический потенциал), G;

- свободная энергия Гельмгольца (изохорно-изотермический потенциал), F.

Внутренняя энергия – общий запас энергии системы за вычетом кинетической энергии системы и потенциальной энергии ее положения. Она складывается из кинетической и потенциальной энергии молекул, атомов, атомных ядер и электронов, из энергии их взаимодействия между собой, энергии связей атомов, атомных ядер и электронов, из энергии их взаимодействия между собой и т.д. Обозначается: U, измеряется в кДж, кДж/моль.

Абсолютное значение внутренней энергии измерить невозможно, но можно измерить ее изменение (DU = U2 – U1) при переходе из одного состояния в другое. D U считается положительной (DU > 0), если при протекании какого-либо процесса внутренняя энергия возрастает, и отрицательной (DU < 0), если при протекании какого-либо процесса она уменьшается.

Известны две формы передачи энергии от одной системы к другой: упорядоченную форму передачи энергии называют работой (А ), а неупорядоченную – теплотой (Q).

Работа является мерой энергии, переданной от одного тела к другому за счет перемещения масс под действием каких-либо сил.

Теплота – мера энергии, переданная от одного тела к другому за счет разницы температур этих тел. Эта форма передачи энергии связана с хаотичным движением молекул соприкасающихся тел; при соударении молекулы более нагретого тела передают энергию молекулам менее нагретого тела. Переноса вещества при этом не происходит. И теплота, и работа измеряются в кДж.

В химической термодинамике считают положительными теплоту,подводимую к системе, и работу, которую система совершает против внешних сил. Внутреннюю энергию системы можно изменить: 1) совершив какую-либо работу над системой; 2) сообщив системе какое-то количество теплоты.

Внутренняя энергия является функцией состояния системы: ее изменение не зависит от пути и способа перехода системы из одного состояния в другое и определяется начальным и конечным состоянием, т.е.

DU = U2 – U1. (1)

Теплота (Q) и работа (А) функциями состояния системы не являются, т.е. количество поглощенной (или выделенной) в процессе теплоты и совершенной работы зависит от пути проведения процесса.





Поделиться с друзьями:


Дата добавления: 2016-03-26; Мы поможем в написании ваших работ!; просмотров: 645 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2339 - | 2145 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.