Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Факторы неинфекционного генеза




К ним относятся факторы физической, химической или биологической природы немикробного генеза.
Действие повреждающих факторов на клетки осуществляется прямо или опосредованно. В последнем случае речь идет о формировании цепи вторичных реакций, образование веществ-посредников, реализующих повреждающее действие так называемого «первичного» патогенного фактора. Его действие может опосредоваться через изменения нервных или эндокринных воздействий на клетки (например, при стрессе, шоке); нарушение системного кровообращения (при сердечной недостаточности); отклонение физико-химических параметров (при состояниях, сопровождающихся ацидозом, алкалозом, образованием свободных радикалов, продуктов СПОЛ, дисбалансом ионов и жидкости); иммуноаллергические реакции при аутоаллергических заболеваниях; образование избытка или недостаток БАВ (гистамина, кининов, простагландинов). Многие из этих и других, участвующих в развитии различных форм патологии клетки, получили название посредников, или медиаторов (например, медиаторы воспаления, аллергии, канцерогенеза и др.), повреждения.

 

Общие механизмы повреждения клеток. На уровне клетки повреждающие факторы “включают” несколько патогенетических звеньев. К их числу относят: - расстройство процессов энергетического обеспечения клеток; - повреждение мембран и ферментных систем; - дисбаланс ионов и жидкости; - нарушение генетической программы и/или ее реализации; - расстройство механизмов регуляции функции клеток.

1. Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, транспорта, а также утилизации его энергии. Синтез АТФ может быть нарушен в результате дефицита кислорода и/или субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, повреждения и разрушения митохондрий, в которых осуществляются реакции цикла Кребса и перенос электронов к молекулярному кислороду, сопряженный с фосфорилированием АДФ. Известно, что доставка энергии АТФ от мест ее синтеза – из митохондрий и гиалоплазмы – к эффекторным структурам (миофибриллам, мембранным ионным “насосам” и др.) осуществляется с помощью ферментных систем: АДФ – АТФ – транслоказы (адениннуклеотидтрансферазы) и креатинфосфокиназы (КФК). Ферментные системы транспорта энергии могут быть повреждены различными патогенными агентами, в связи с чем даже на фоне высокого общего содержания АТФ в клетке может развиваться его дефицит в энергорасходующих структурах. Нарушение энергообеспечения клеток и расстройства их жизнедеятельности может развиваться и в условиях достаточной продукции и нормального транспорта энергии АТФ. Это может быть результатом повреждения ферментных механизмов утилизации энергии, главным образом за счет снижения активности АТФазы (АТФазы актомиозина, К+ - Na+ - зависимой АТФазы плазмолеммы, Mg2+ - зависимой АТФазы “кальциевой помпы” саркоплазматического ретикулума и др.). Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем, баланса ионов и жидкости, а также механизмов регуляции клетки.

2. Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, сто основные свойства клетки в существенной мере зависит от состояния ее мембран и связанных с ними или свободных энзимов. а). Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация свободнорадикальных реакций (СРР) и ПСОЛ. Эти реакции протекают в клетках и в норме, являясь необходимым звеном таких жизненноважных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и созревание клеток, фагоцитоз, метаболизм катехоламинов и др. ПСОЛ участвует в процессах регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на энзимы, так и опосредованного – через изменение состояния мембран, с которыми ассоциированы многие ферменты. Интенсивность ПСОЛ регулируются соотношением факторов, активирующих (прооксиданты) и подавляющих (антиоксиданты) этот процесс. К числу наиболее активных прооксидантов относятся легко окисляющиеся соединения, индуцирующие свободные радикалы, в частности, нафтохиноны, витамины А и Д, восстановителя – НАДФН2, НАДН2, липоевая кислота, продукты метаболизма простагландинов и катехоламинов. Процесс ПСОЛ условно можно разделить на три этапа:

1) кислордной иницикации (“кислородный” этап)

2) образования свободных радикалов органических и неорганических агентов (“свободнорадикальный” этап)

3) продукции перекисей липидов (“перекисный” этап).

Инициальным звеном свободнорадикальных перекисных реакций при повреждении клетки является, как правило, образование в процессе оксигеназных реакций так называемых активных форм кислорода: супероксидного радикала кислорода (О2*), гидроксильного радикала (ОН*), перекиси водорода (Н2О2), которые взаимодействуют с компонентами структур клеток, главным образом с липидами, белками и нуклеиновыми кислотами. В результате образуются активные радикалы, в частности, липидов, а также их перекиси. При этом может приобрести цепной “лавинообразный” характер. Однако это происходит не всегда. В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Одним из таких процессов является взаимодействие радикалов и гидроперекисей липидов между собой, что ведет к образованию “нерадикальных” соединений. Ведущую роль в системе антиоксидантной защите клеток играют механизмы ферментной, а также не ферментной природы. Звенья антиоксидантной системы и ее некоторые факторы:

Звенья антиоксидантной системы

Факторы Механизмы действия 1 2 3

I. “Антикислородное” Ретинол, каротиноиды, рибофлавин

Уменьшение содержания О2 в клетке, например, путем активации его утилизации, повышения сопряжения процессов окисления и фосфорилирования. 1 2 3

II. “Антирадикальное” супероксиддис мутаза, токоферолы, маннитол Перевод активных радикалов в “нерадикальные” соединения, “гашение” свободных радикалов органическими соединениями.

III. “Антиперекисное” Глютатионперо ксидазы, каталазы, серотинин Инактивация гидроперекисей лиидов, например, при их восстановлении. Исследование последних лет показали, что чрезмерная активация свободнорадикальных и перекисных реакция является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы:

1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран;

2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке;

3) образование структурных дефектов в мембране – т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПСОЛ. Указанные процессы, в сою очередь, обуславливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения неравного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др. б). Активация гидролаз (лизосомальных, мембраносвязанных и свободных). В норме состав и состояние мембран и ферментов модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов. в). Внедрение амфифильных соединений в липидную фазу мембран. В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфотидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих – как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи – означает “оба”, “два”). При сравнительно небольшом уровне в клетке амфифильных соединений они, внедряясь в биомембраны изменяют нормальную последовательность глицерофосфолипидов, нарушают структуру липопротеидных комплексов, увеличивают пронацаемость, а также меняют конфигурацию мембран в связи с “клинообразной” формой липидных мицелл. Накопление в большом количестве амфифилов сопровождается массированным внедрением их в мембраны, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

3. Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненноважных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др. а). Изменение трансмембранного соотношения ионов. Как правило, дисбаланс ионов проявляется накоплением в клетке натрия и потерей калия. Следствием дисбаланса является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнфецалограммы при нарушении структуры и функций нейронов головного мозга. б). Гипер- и дегидратацияклеток. Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Он проявляется либо гипергадратацией (уменьшением содержания жидкости) клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжением и нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

4. Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и /или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, депрессия патогенных генов (например, онкогенов), подавление активности жизненноважных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки). Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы, главным образом, в процессе клеточного деления при митозе или мейозе. 5. Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов: - на уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки; - на уровне клеточных т.н. “вторых посредников” (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующих в ответ на действие “первых посредников” – гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий; - на уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 771 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2282 - | 1989 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.03 с.