Понятие о гене. Структурная организация генов прокариот и эукариот. Классификация генов.
Геном прокариот
Основной чертой молекулярной организации прокариот является отсутствие в их клетках ядра, отгороженного ядерной мембраной от цитоплазмы. Отсутствие ядра является лишь внешним проявлением особой организации генома у прокариот.
Геном прокариот построен очень компактно. Количество некодирующих последовательностей нуклеотидов минимально. Многие механизмы регуляции экспрессии генов, использующиеся у эукариот, никогда не встречаются у прокариот. Простота строения генома прокариот объясняется их упрощенным жизненным циклом.
Ген — единица наследственной информации, занимающая определенное положение в геноме или хромосоме и контролирующая выполнение определенной функции в организме. По результатам исследования прокариот, главным образом Е. сoll, ген состоит из двух основных элементов: регуляторной части и собственно кодирующей части. Регуляторная часть гена обеспечивает первые этапы реализации генетической информации, заключенной в структурной части гена; структурная часть гена содержит информацию о структуре кодируемого данным геном полипептида. Количество некодирующих последовательностей в структурной части гена у прокариот минимально. 5'-конец прокариотического гена имеет характерную организацию регуляторных элементов, особенно на расстоянии 50 — 70 н.п. от точки инициации транскрипции. Этот участок гена называют промотором. Он важен для транскрипции гена, но сам в РНК не транскрибируется. Противоположный 3'-конец — терминаторная область, необходимая для тер-минации транскрипции. В РНК он также не транскрибируется. Транскрипция начинается со стартовой точки (+1).
Последовательности ДНК, являющиеся сигналами остановки транскрипции, находятся на 3'-конце гена и называются транскрипционными терминаторами. Они содержат последовательности, которые в транскрибируемой РНК формируют структуру шпильки.
Кроме хромосомы у большинства бактерий существуют другие способные к автономной репликации структуры — плазмиды. Это двуцепочечные кольцевые ДНК размером от 0,1 до 5% размера хромосомы, несущие гены, необязательные для клетки-хозяина, или гены, необходимые лишь в определенной среде. Именно такие внехромосомные элементы и содержат гены, которые придают клеткам наследуемую устойчивость к одному или нескольким антибиотикам. Они получили название факторов резистентности, или К-факторов. Другие плазмиды определяют болезнетворность патогенных бактерий, например патогенных штаммов Е. соli, возбудителей чумы и столбняка. Третьи — определяют способность почвенных бактерий использовать необычные источники углерода, например углеводороды нефти.
Геном эукариот
Для клеток эукариот характерно наличие оформленного ядра. Информационной макромолекулой их генома является ДНК, которая неравномерно распределена по нескольким хромосомам в виде комплексов с многочисленными белками. Однако генетическую информацию в клетках содержат не только хромосомы ядра. Жизненно важная генетическая информация заключена и во внехромосомных молекулах ДНК. У эукариот — это ДНК хлоропластов, митохондрий и других пластид. Под геномом эукариотического организма в настоящее время понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма.
Геном эукариот существенно отличается от генома прокариот по ряду признаков, среди которых необходимо отметить его избыточность. Эукариотическая клетка содержит во много раз больше генов, чем прокариотическая. Повышенное содержание ДНК в геноме эукариот нельзя объяснить лишь увеличением потребности этих организмов в дополнительной генетической информации в связи с усложнением организации, поскольку большая часть их геномной ДНК, как правило, представлена некодирующими последовательностями нуклеотидов. Феномен значительной избыточности генома эукариот в отношении некодирующих последовательностей нуклеотидов известен под названием «парадокса С».
Эукариотический ген можно рассматривать как совокупность сегментов ДНК, которые вместе составляют экспрессируемую единицу, ответственную за образование специфического функционального продукта — либо молекулы РНК, либо полипептида.
К сегментам ДНК, составляющим ген, относятся следующие элементы:
Единица транскрипции – это участок ДНК, кодирующий
первичный транскрипт. Он включает: а) последовательность, которая обнаруживается в зрелых функциональных молекулах РНК; б) интроны (для мРНК); в) промежуточные последовательности - спейсеры (для рРНК). Интроны и спейсеры удаляются в
ходе процессинга первичных транскриптов; г) 5'- и 3'-нетранслируемые последовательности (5'-НТП и З'-НТП).
Минимальные последовательности, необходимые для начала
транскрипции (промотор) и конца транскрипции (терминатор).
Последовательности, регулирующие частоту инициации транскрипции, ответственные за индуцибельность и репрессию транскрипции, а также клеточную, тканевую и временную специфичность транскрипции. Они разнообразны по строению, положению и функциям. К их числу относятся энхансеры
и сайленсеры - это последовательности ДНК, расположенные в
тысячах пар нуклеотидов от промотора эукариотического гена и
оказывающие дистанционное влияние на его транскрипцию.
В отличие от прокариотических генов, почти всегда коллинеарных своим РНК, многие гены эукариот имеют мозаичное строение. Под мозаичностью в данном случае подразумевается чередование кодирующих (экзоны) и некодирующих (вставочные последовательности, или интроны) последовательностей в пределах единицы транскрипции. Интроны чаще всего встречаются в генах, кодирующих белки.
Существенную часть генома эукариот (10 — 30%) составляют повторяющиеся последовательности, имеющие определенную структурную организацию и способные перемещаться в геноме как в пределах одной хромосомы, так и между хромосомами. Они получили название подвижных генетических элементов.
Различают два основных класса подвижных генетических элементов: транспозоны и ретротранспозоны. Такая классификация основана на молекулярных механизмах, с помощью которых перемещаются эти элементы.
Классификация генов
Накопленные знания о структуре, функциях, характере взаимодействия, экспрессии, мутабильности и других свойствах генов породили несколько вариантов классификации генов.
По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра, ядерные гены и цитоплазматические гены, локализация которых связана с хлоропластами и митохондриями.
По функциональному значению различают:структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены - последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.).
По влиянию на физиологические процессы в клетке различают: летальные, условно летальные, супервитальные гены, гены-мутаторы, гены-антимутаторы и др.
Следует отметить, что любые биохимические и биологические процессы в организме находятся под генным контролем. Так, деление клеток (митоз, мейоз) контролируется несколькими десятками генов; группы генов осуществляют контроль восстановления генетических повреждений ДНК (репарация). Онкогены и гены - супрессоры опухолей участвуют в процессах нормального деления клеток. Индивидуальное развитие организма (онтогенез) контролируется многими сотнями генов. Мутации в генах приводят к измененному синтезу белковых продуктов и нарушению биохимических или физиологических процессов.
Гомеозисные мутации у дрозофилы позволили открыть существование генов, нормальной функцией которых является выбор или поддержание определенного пути эмбрионального развития, по которому следуют клетки. Каждый путь развития характеризуется экспрессией определенного набора генов, действие которых приводит к появлению конечного результата: глаза, голова грудь, брюшко, крыло, ноги и т. д. Исследования генов комплекса bithorax дрозофилы американским генетиком Льюисом показали, что это гигантский кластер тесно сцепленных генов, функция которых необходима для нормальной сегментации груди (thorax) и брюшка (abdomen). Подобные гены получили название гомеобоксных. Гомеобоксные гены расположены в ДНК группами и проявляют свое действие строго последовательно. Такие гены обнаружены и у млекопитающих, и они имеют высокую гомологию (сходство).
Понятие о геноме. Организация генома человека.
Общая длина ДНК гаплоидного набора из 23 хромосом человека составляет 3,5´109 пар нуклеотидов. Этого количества ДНК достаточно для создания нескольких миллионов генов. Однако истинное число структурных генов находится в области 40 тысяч. Такую избыточность ДНК объясняют как сложной организацией генов, так и наличием повторяющихся участков ДНК.
В геноме человека примерно 60% приходится на участки ДНК, представленные в виде одной или нескольких копий. Это так называемые уникальные последовательности, несущие информацию о структуре специфических белков, и представляющие собой структурные гены. Нередко уникальные последовательности образуют мультигенные семейства, располагающиеся в виде кластеров в определенных областях одной или нескольких хромосом. Примерами мультигенных семейств могут служить гены a- и b-глобинов, тубулинов, миоглобина, актина и трансферрина. В мультигенных семействах наряду с функционально активными генами содержатся псевдогены – мутационно измененные последовательности, не способные транскрибироваться или продуцирующие функционально неактивные генные продукты.
До 30% генома представлено умеренно повторяющимися последовательностями (от 10 до 10 000 копий на гаплоидный геном). Сюда относятся гены, которые кодируют продукты, необходимые клетке в больших количествах. Так, гены рРНК имеются у человека в количестве от 300 до 600 копий. Многократно повторяются гены, кодирующие тРНК, гистоны, цепи иммуноглобулинов. Чаще всего они располагаются в ДНК в виде тандемных (следующих друг за другом) повторов. В группу
умеренно повторяющихся последовательностей входят и участки ДНК, которые не транскрибируются, но выполняют важные регуляторные функции (промоторы, энхансеры, сайленсеры).
Часто повторяющиеся последовательности могут присутствовать в одном геноме сотни тысяч и миллионы раз. В основном это сателлитная ДНК, сосредоточенная в центромерном и теломерном хроматине. Она состоит из простых последовательностей, формирующих кластеры (скопления нескольких сотен копий). Предполагается, что сателлиты участвуют в спаривании и расхождении хромосом. У человека на долю сателлитной приходится около 10% ДНК