Аутэкология, изучающая отношения организмов к условиям среды.
КЛАССИФИКАЦИЯ ФАКТОРОВ СРЕДЫ.
Факторы среды делятся на абиотические, то есть факторы неорганической, или неживой, природы, и биотические – порожденные жизнедеятельностью организмов.
Совокупность абиотических факторов в пределах однородного участка называется экотопом, вся совокупность факторов, включая биотические, – биотопом.
К абиотическим факторам относятся:
1. климатические – свет, тепло, воздух, вода (включая осадки в различных формах и влажность воздуха), ветер;
2. эдафические, или почвенно грунтовые, – механический и химический состав почвы, ее водный и температурный режим;
3. топографические – условия рельефа.
Климатические и эдафические факторы во многом определяются географическим положением экотопа – его удаленностью от экватора и от океана и высотой над уровнем моря.
Специфические абиотические факторы в водных экосистемах – глубина водной толщи, характер грунта на дне водоема, химический состав, прозрачность и температура воды, течение (или волны).
Абиотические факторы разделяются на прямые и косвенные.
Прямые факторы непосредственно влияют на организмы. Их примеры: влажность почвы и воздуха, температура, свет, богатство почвы и воды элементами минерального питания, скорость течения воды и др.
Косвенные факторы действуют на организмы опосредствованно – через прямые факторы. Их примеры: географическая широта и удаленность от океана, рельеф (высота над уровнем моря и экспозиция склона), гранулометрический состав почвы, прозрачность воды.
С подъемом в горы также изменяется климат (количество осадков и температурный режим); экспозиция и крутизна склона влияют на интенсивность прогревания поверхности почвы и режим ее увлажнения. В среднем с повышением высоты над уровнем моря на 100 м среднегодовая температура уменьшается на 0,5°C, однако изменения климата на этом градиенте зависят от географической широты и удаленности от океана: широтный, долготный и высотный градиенты взаимодействуют.
Гранулометрический состав почвы влияет на растения и почвенную фауну через режим увлажнения и динамику питательных элементов.
Биотические факторы являются следствием взаимоотношений организмов. Для растений – это конкуренция, влияние животных (фитофаги, паразиты, опылители, распространители плодов и семян), грибов (микоризные, паразитические), бактерий (азотфиксирующие и болезнетворные), вирусов. Для животных – это конкуренция, влияние хищников, патогенных микроорганизмов, растений (для фитофагов).
Факторы, связанные с влиянием человека, выделяются в отдельную группу антропогенных. К наиболее существенным антропогенным факторам относятся следующие: химическое загрязнение воды, атмосферы и почвы, техногенное нарушение экосистем при разработке полезных ископаемых, выпас скота, рекреационное влияние, промысел животных (включая лов рыбы), заготовка растительного сырья. Особую роль человек играет как агент переселения видов из одного района в другой. Биологические инвазии, спровоцированные человеком, в настоящее время приняли катастрофические масштабы.
УСЛОВИЯ И РЕСУРСЫ.
Прямые абиотические факторы подразделяются на факторы условия и факторы ресурсы.
условия – это изменяющиеся во времени и пространстве факторы среды обитания, на которые организмы реагируют по разному, но эти составляющие среды не расходуются: один организм не может сделать их более доступными или недоступными для других. К числу факторов условий относятся температура, влажность воздуха, соленость воды и скорость ее течения, реакция (рН) почвенного раствора, содержание в воде и почве загрязняющих веществ, которые не используются растениями как элементы питания.
В отличие от факторов условий, факторы ресурсы расходуются организмами в процессе жизнедеятельности, и потому один более сильный организм может «съесть» ресурсов больше, а другому, более слабому, их останется меньше.
РЕСУРСЫ.
Для растений ресурсами являются свет, вода, элементы минерального питания, диоксид углерода, для насекомоопыляемых – насекомые опылители (ветер как опылитель является фактором условием). Для животных фитофагов ресурсом являются растения, для зоофагов (хищников) – живые животные, для детритофагов сапротрофов и редуцентов (бактерии, грибы) – мертвое органическое вещество. Для большинства организмов необходимым ресурсом является кислород.
Свет. Это основной источник энергии для наземных и водных экосистем. Все экосистемы Земли используют в процессе фотосинтеза не более 0,001% от всего потока энергии, поступающей с солнечным светом на Землю. В 30–40 раз больше растения используют тепловой энергии солнечного света на испарение (транспирацию).Для фотосинтеза используется лишь часть световых волн – в диапазоне 400–700 нм. Эта часть солнечной энергии составляет около 40% поступающего на Землю света и называется фотосинтетически активной радиацией (ФАР). Показателем числа слоев листьев, через которые проходит свет, является индекс листовой поверхности (ИЛП), который определяется как отношение площади листьев к площади поверхности почвы, над которой они находятся. В разомкнутых сообществах пустынь ИЛП составляет доли единицы, в большинстве луговых сообществ – равен 4–6, а в еловом лесу – может достигать 12, то есть на 1 гектар леса приходится 12 гектаров поверхности листьев.Свет является неисчерпаемым ресурсом, который постоянно поступает на Землю в результате солнечной радиации.
Вода. Необходимым фактором жизни любого организма является его обводнение, так как именно вода является средой, в которой протекают все основные метаболические процессы.Ни один организм не обладает надежной системой сохранения воды, содержащейся в его клетках, и потому этот ресурс нуждается в постоянном пополнении. Круговорот воды в биосфере делает ее неисчерпаемым (возобновимым) ресурсом, однако под влиянием человека этот круговорот изменился. Кроме того, во многих районах вода сильно загрязнена, что ограничивает возможность использования ее организмами многих видов, включая человека.
Элементы питания. Элементы, необходимые для жизни организмов, называются биогенными. Основные биогены называются макроэлементами, шесть из них нужны всем живым существам и в больших количествах.Чтобы запомнить их, экологи составили из латинских букв, соответствующих химическим символам, смешное слово CHNOPS («ЧНОПС»: С – углерод, Н – водород, N – азот, О – кислород, Р – фосфор, S – сера).Из других макроэлементов важны: кальций, калий, магний, причем кальций в больших количествах необходим позвоночным и моллюскам для построения скелета или раковин, а магний – растениям, так как он входит в состав молекулы хлорофилла.
Остальные элементы нужны организмам в меньших количествах и называются микроэлементами. Растениям необходимы 10 микроэлементов, в том числе для фотосинтеза – марганец, железо, хлор, цинк, ванадий; для азотного обмена – молибден, бор, кобальт, железо; для прочих метаболических реакций – марганец, бор, кобальт, медь, кремний. Все эти элементы, кроме бора, нужны и животным. Кроме того, животным необходимы селен, хром, никель, йод, фтор, олово, мышьяк.
Кислород. Этот элемент необходим для дыхания подавляющему большинству организмов, однако его дефицит наблюдается только в водных экосистемах и переувлажненных почвах, что связано с низкой растворимостью кислорода в воде. растворимость кислорода снижается при повышении температуры и солености. Это делает кислород фактором, ограничивающим возможности жизни многих обитателей водоемов. Они гибнут летом при повышении температуры и зимой при заморозк, когда вода изолирована от атмосферы слоем льда и весь кислород израсходован организмами.Пополнение запаса кислорода в воде происходит за счет его поступления из воздуха, причем этот медленный процесс может ускорить сильный ветер. Кислород выделяют водные растения, в первую очередь фитопланктон, в процессе фотосинтеза.
Пространство. Физическое пространство является ресурсом, потому что любые факторы ресурсы, которые потребляются организмами, занимают определенную территорию. Растения, чтобы проходить нормальный жизненный цикл, должны получить определенную площадь «под солнцем» и некоторый объем почвы для потребления воды и элементов минерального питания (площадь питания). Животным фитофагам нужен «участок пастбища» (для тли это будет часть листа, для косяка лошадей – десятки гектаров степи, для стада слонов – десятки квадратных километров), плотоядным животным – охотничьи наделы.
ОРГАНИЗМЫ КАК ПИЩЕВЫЕ РЕСУРСЫ.
Использование организмов как пищевых ресурсов возможно в трех вариантах:
1. хищничество – съедание организма ресурса в живом состоянии. Организм ресурс при этом может быть убит (как заяц волком) или съеден по частям при сохранении его живым (поедание растений фитофагами, питание оводов и слепней сельскохозяйственными животными);
2. паразитизм – длительное использование живого организма ресурса как среды жизни и источника пищи;
3. детритофагия – поедание мертвого организма.
Растения и животные резко различаются как пищевые ресурсы. Клеточные оболочки растений образованы целлюлозой и лигнином, по этой причине количественное соотношение углерода и азота (С:N) в растительных тканях составляет от 20:1 до 40:1. У животных, клетки которых лишены «целлюлозного чехла», содержание углерода гораздо ниже, и это соотношение составляет от 8:1 до 10:1.
У фитофагов нет ферментов, позволяющих переваривать целлюлозу, поэтому усвоение растительной пищи всегда очень низкое. Чтобы разрушить оболочки клеток, фитофаги тщательно измельчают (пережевывают) пищу. Тем не менее, разложение целлюлозы выполняют живущие в пищеварительном тракте фитофагов прокариоты и низшие животные, которые обладают целлюлозолитическими ферментами. Животные детритофаги стремятся поедать растительный детрит не в «свежем состоянии», а когда он уже заселен микроорганизмами редуцентами.
Зоофаги измельчают свою пищу незначительно и часто вообще заглатывают ее целиком.
УСЛОВИЯ.
Температура.Температура изменяется в связи с географической широтой, высотой над уровнем моря и долготой (расстоянием от океана, которое определяет степень континентальности климата), в сезонными и суточными циклами.Кроме того, на нее влияют микроклиматические особенности экотопа: разная степень прогревания склонов разной экспозиции, стекание горного холодного воздуха в долины, а в водных экосистемах – глубина. В глубоких слоях водоема температура более низкая и стабильная, а поверхностные воды в теплое время года прогреваются.
Для эктотермных (холоднокровных) организмов большое значение имеет «физиологическое время», измеряемое в «градусо днях» – произведении средней температуры на число дней, которые характеризовались превышением «порога развития» (температуры, начиная с которой организм оживает).Яйца кузнечиков начинают развиваться после того, как средняя дневная температура превысит 16°C. Если температура будет на уровне 20°C, то развитие потребует 17,5 суток, а если она поднимется до 30°C – сократится до 5 суток. Разумеется, если температура превысит верхний порог, при котором возможно существование того или иного организма, то он погибнет.Температурные пределы, т.е. самые высокие и самые низкие температуры, которые могут выносить разные организмы в активном состоянии, различны. Кроме того, они зависят от влажности воздуха. Так растения во влажной атмосфере легче переносят стресс высоких температур. Влияние низких температур тем более губительно, чем оно более продолжительно. Чемпион по переживанию низких температур – лиственница: переносит морозы именно за счет способности переходить в состояние покоя.
Относительная влажность воздуха. Этот фактор условие обычно тесно взаимодействует с температурой, и риск обезвоживания растений, насекомых или других животных при высоких температурах тем выше, чем ниже влажность воздуха.Влажность воздуха может меняться в разных частях экосистемы: быть достаточно высокой внутри травостоя злаковника и низкой – над его поверхностью. При высокой влажности и очень сухих почвах этот фактор может становиться ресурсом. Выпадение росы, к примеру, играет роль в обеспечении влагой пустынных растений.
рН воды и почвы. Концентрация ионов водорода в воде влияет на организмы непосредственно (при рН ниже 3 происходит повреждение протоплазмы клеток корня у большинства сосудистых растений) и косвенно.При этом косвенное влияние рН сильнее: при кислой реакции среды почва насыщается токсичными подвижными соединениями алюминия и железа, в щелочных почвах резко падает доступность фосфатов и многих микроэлементов.При понижении рН (например,в результате выпадения кислотных дождей) нарушаются метаболические процессы в организмах: осморегуляция, работа ферментов и газообмен через дыхательные поверхности. Подзолистые и серые лесные почвы имеют слабокислую реакцию в результате выщелачивания кальция разлагающейся подстилкой. По этой причине кислотные дожди в этой зоне особенно губительны – снижают плодородие почвы.В то же время эти дожди наносят сравнительно малый ущерб черноземам степной зоны, которые имеют слабощелочную реакцию и хорошо нейтрализуют выпадающие кислоты. Более того, содержащиеся в кислых дождях оксиды азота могут быть азотным удобрением и повышать урожай.
Соленость воды. Большая часть воды, которая имеется на земле – соленая морская.Для большинства обитателей моря соленость – чрезвычайно важный фактор. Многие из них изотоничны: концентрация солей во внутренней среде организма примерно такая же, как и в морской воде. Поэтому у них нет проблем с удержанием воды, которая при гипотоничности (т.е. низкой концентрации солей в организме) могла бы быть «вытянута» из организмов под действием осмотических сил. Однако среди обитателей моря много и гипотоничных организмов, например морских рыб, которые затрачивают энергию на удержание в теле воды. Засоление почв характерно для лесостепной, степной и пустынной зон и меняется с севера на юг по ряду: сульфатное – сульфатно хлоридное – хлоридно содовое. В любой зоне возможны все варианты уровня засоления – от слабого (содержание солей составляет доли процентов) до солончака (несколько процентов солей от общего веса почвы), хотя площадь солончаков возрастает с севера на юг.
Течение. Этот прямодействующий физический фактор играет большую роль при определении видового состава растений и животных, в первую очередь в речных экосистемах. В быстротекущих реках состав биоты представлен организмами, участвующими в обрастании камней (т.е. перифитона), прежде всего нитчатыми водорослями, а также разнообразными беспозвоночными, обитающими под камнями. В медленно текущих реках формируются богатые видами высокопродуктивные экосистемы с участием разнообразных растений макрофитов. Экосистемы прибрежий таких рек по составу биоты напоминают озера, в которых вообще отсутствует течение.Течение влияет на состав водных экосистем также как косвенный фактор через концентрацию в воде кислорода, являющегося важным ресурсом. Чем быстрее течение воды, тем содержание в ней кислорода выше.Морские течения переносят теплые и холодные массы воды и тем самым посредством температуры влияют на условия жизни в море. Теплую воду несут Гольфстрим и Северо Атлантическое течение, холодную – Калифорнийское течение (по этой причине на побережье Калифорнии обычны туманы). Кроме поверхностных ветровых течений, существуют и глубоководные перемещения водных масс. По этой причине в морских экосистемах, как правило, не бывает недостатка кислорода, что достаточно обычно для озерных экосистем.
В жизни водных экосистем большую роль играет также вертикальное перемещение водных масс. В пресноводных водоемах перемешивание выравнивает градиент температуры от поверхности до глубоководий и повышает содержание кислорода во всей водной толще. Особую же роль явление перемешивания вод играет в океанах, где происходит подъем больших масс холодной и обогащенной элементами питания воды к поверхности, что называется апвеллингом.
Морские течения, кроме того, являются «машинами климата», т.е. косвенным фактором, который через изменение температуры и влажности влияет на наземные экосистемы.
Загрязняющие вещества. Повышение концентрации загрязняющих веществ в воде, атмосфере и почве во многом связано с хозяйственной деятельностью человека, и потому характер загрязнения зависит от типа производства.Основными источниками веществ, загрязняющих атмосферу, являются предприятия топливно энергетического комплекса и транспорт, а загрязняющих воду – предприятия химической промышленности. Загрязняющие атмосферу оксиды серы и азота с кислотными дождями попадают в водные и наземные экосистемы. Большую опасность для водных экосистем представляет поступление в них биогенов – фосфатов, соединений азота и др., которые вызывают эвтрофикацию экосистем. Если в экосистему попадают высокотоксичные элементы, такие как ртуть, то происходит подрыв ее биологической продуктивности и гибель большей части организмов.
Устойчивость организмов разных видов к действию загрязняющих веществ различна, что позволяет по составу биоты оценивать уровень загрязнения экосистемы.
Основные жизненные среды
1.Водная среда жизни. Это самая древняя среда, в которой жизнь возникла и долго эволюционировала еще до того момента, как первые организмы появились на суше. По составу водной среды жизни различаются два ее основных варианта: пресноводная и морская среды.
Водой покрыто более 70% поверхности планеты. Разнообразие организмов в водной среде намного меньше, чем на суше.
Плотность воды выше плотности воздуха в 800 раз. И давление на населяющие ее организмы также много выше, чем в наземных условиях: на каждый 10 м глубины оно возрастает на 1 атм. Одно из основных направлений приспособления организмов к жизни в водной среде – повышение плавучести за счет увеличения поверхности тела и формирования тканей и органов, содержащих воздух. Организмы могут парить в воде (как представители планктона – водоросли, простейшие, бактерии) или активно перемещаться, как рыбы, формирующие нектон. Значительная часть организмов прикреплена к поверхности дна или перемещается по ней.
Основу продукции большинства водных экосистем составляют автотрофы, использующие солнечный свет, пробивающийся через толщу воды. Возможность «пробивания» этой толщи определяется прозрачностью воды. В прозрачной воде океана в зависимости от угла падения солнечного света автотрофная жизнь возможна до глубины 200 м в тропиках и 50 ти м в высоких широтах (например,в морях Северного Ледовитого океана). В сильно взмученных пресноводных водоемах слой, заселенный автотрофами (его называют фотическим), может составлять всего несколько десятков сантиметров.
Наиболее активно поглощается водой красная часть спектра света, поэтому, как отмечалось, глубоководья морей заселены красными водорослями, способными за счет дополнительных пигментов усваивать зеленый свет. Прозрачность воды определяется несложным прибором – диском Секки, который представляет собой окрашенный в белый цвет круг диаметром 20 см. О степени прозрачности воды судят по глубине, на которой диск становится неразличимым.
Важнейшей характеристикой воды является ее химический состав – содержание солей (в том числе биогенов), газов, ионов водорода (рН). По концентрации биогенов, особенно фосфора и азота, водоемы разделяются на олиготрофные, мезотрофные и эвтрофные. При повышении содержания биогенов, скажем, при загрязнении водоема стоками, происходит процесс эвтрофикации водных экосистем.
Содержание кислорода в воде примерно в 20 раз ниже, чем в атмосфере, и составляет 6–8 мл/л. Оно снижается при повышении температуры, а также в стоячих водоемах в зимнее время, когда вода изолирована от атмосферы слоем льда. Снижение концентрации кислорода может стать причиной гибели многих обитателей водных экосистем, исключая особо устойчивые к дефициту кислорода виды, подобные карасю или линю, которые могут жить даже при снижении содержания кислорода до 0,5 мл/л.
Содержание углекислого газа в воде, напротив, выше, чем в атмосфере. В морской воде его может содержаться до 40–50 мл/л, что примерно в 150 раз выше, чем в атмосфере. Потребление углекислого газа фитопланктоном при интенсивном фотосинтезе не превышает 0,5 мл/л в сутки.
Концентрация ионов водорода в воде (рН) может меняться в пределах 3,7–7,8. Нейтральными считаются воды с рН от 6,45 до 7,3. Как уже отмечалось, с понижением рН биоразнообразие организмов, населяющих водную среду, быстро убывает. Речной рак, многие виды моллюсков гибнут при рН ниже 6, окунь и щука могут выдержать рН до 5, угорь и голец выживают при понижении рН до 5–4,4. В более кислых водах сохраняются лишь некоторые виды зоопланктона и фитопланктона. Кислотные дожди, связанные с выбросами в атмосферу больших количеств оксидов серы и азота промышленными предприятиями, стали причиной подкисления вод озер Европы и США и резкого обеднения их биологического разнообразия.
2.Наземно воздушая среда жизни. Воздух отличается значительно более низкой плотностью по сравнению с водой. По этой причине освоение воздушной среды, которое произошло много позже, чем зарождение жизни и ее развитие в водной среде, сопровождалось усилением развития механических тканей, которые позволили организмам противостоять действию закона всемирного тяготения и ветра (скелет у позвоночных животных, хитиновые панцири у насекомых, склеренхима у растений). В условиях только воздушной среды ни один организм постоянно жить не может, и потому даже лучшие «летуны» (птицы и насекомые) должны периодически опускаться на землю. Перемещение организмов по воздуху возможно за счет специальных приспособлений – крыльев у птиц, насекомых, некоторых видов млекопитающих и даже рыб, парашютики и крылышки у семян, воздушные мешки у пыльцы хвойных пород и т.д.
Воздух – плохой проводник тепла, и потому именно в воздушной среде на суше возникли эндотермные (теплокровные) животные, которым легче сохранить тепло, чем эктотермным обитателям водной среды. Для теплокровных водных животных, включая гигантов китов, водная среда вторична, предки этих животных когда то жили на суше.
Для жизни в воздушной среде потребовались более сложные механизмы размножения, которые исключали бы риск высыхания половых клеток (многоклеточные антеридии и архегонии, а затем семязачатки и завязи у растений, внутреннее оплодотворение у животных, яйца с плотной оболочкой у птиц, пресмыкающихся, земноводных и др.).
В целом возможностей для формирования разнообразных сочетаний факторов в условиях наземно воздушной среды много больше, чем водной. Именно в этой среде особенно ярко проявляются различия климата разных районов (и на разных высотах над уровнем моря в пределах одного района). Поэтому разнообразие наземных организмов много выше, чем водных.
3.Почвенная среда жизни. Большая часть суши покрыта тонким слоем (по сравнению с толщей земной коры) почвы, названной в.И. Вернадским биокосным телом. Почва представляет собой сложный многослойный «пирог» из горизонтов с разными свойствами, причем состав и толщина «пирога» в разных зонах различны. Общеизвестны зональный (от подзолов и серых лесных до черноземов, каштановых и бурых почв) и гидрогенный (от влажно луговых до болотно торфянистых) ряды почв. В южных районах почвы могут быть, кроме того, засолены на поверхности (солончаковатые почвы и солончаки) или в глубине (солонцы).
Любая почва представляет собой многофазную систему, в состав которой входят:
– минеральные частицы – от тончайшего ила до песка и гравия;
– органическое вещество – от тел только что умерших животных и отмерших корней растений до гумуса, в котором это органическое вещество подверглось сложной химической обработке;
– газовая (воздушная) фаза, характер которой во многом определяется физическими свойствами почвы – ее структурой и соответственно плотностью и порозностью. Газовая фаза почвы всегда обогащена углекислым газом и парами воды и может быть обеднена кислородом, что сближает условия жизни в почве с условиями водной среды;
– водная фаза. Вода в почве также может содержаться в разных количествах (от избытка до крайнего дефицита) и в разных качествах, быть гравитационной, т.е. свободно перемещающейся по капиллярам и наиболее доступной для корней растений и животных организмов, гигроскопической, т.е. входящей в состав коллоидных частиц, и газовой, т.е. в форме пара.
Эта многофазность почв делает их среду наиболее насыщенной жизнью. В почвах сконцентрирована основная биомасса животных, бактерий, грибов, в ней расположены корни растений, живущих в наземно воздушной среде, но извлекающих из почвы воду с элементами питания и поставляющие в «темный мир» почвы органическое вещество, накопленное в процессе фотосинтеза на свету. Почва – это главный «цех по переработке» органического вещества, через нее протекает до 90% углерода, возвращаемого в атмосферу.
Гигантское разнообразие жизни в почве включает не только те организмы, которые живут в ней постоянно – позвоночные (кроты), членистоногие, бактерии, водоросли, дождевые черви и т.д., но и те организмы, которые связаны с ней лишь в начале своей «биографии» (саранчовые, многие жуки и т.д.).
4.Организмы как среда жизни. Нет ни одного вида многоклеточных организмов, который не был бы заселен другими организмами, и в первую очередь паразитами. Разные организмы и разные их органы, ткани и клетки имеют свою специфику как жизненные среды и свое паразитарное население, которое в разной степени опасно для хозяина, предоставившего им «жилплощадь со столом». Тем не менее, есть общие особенности этой среды жизни: в ней смягчены колебания внешних условий, и практически не ограничены ресурсы пищи.
Далеко не всегда хозяин, который заселен паразитами, оказывается беспомощным перед «назойливыми квартирантами». В этом случае паразитам приходится преодолевать неблагоприятные условия, формируемые в результате защитных реакций хозяина. По этой причине лучшая среда жизни для многих паразитов – это старые ослабленные особи.
Организмы как среду жизни, кроме паразитов, могут использовать многие виды, которые полезны организму хозяину, т.е. находятся с ним в отношениях взаимовыгодного сотрудничества – мутуализма (см. 8.6).