Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Культивирование изолированных органов вне организма




Культивирование изолированных органов базируется на том» что в ор­ганах, отделенных от целого организма, при определенных условиях мо­гут осуществляться процессы жизнедеятельности. Более того, органы, изъятые от трупа до наступления в них биологической смерти, удается «оживить» и заставить функционировать в специальных камерах. Изо­лированное сердце лягушки способно продолжать пульсировать 7-8 дней. А. А. Кулябко (1866-1930) в 1902 г. удалось «оживить» сердце ребенка, умершего от инфекционного заболевания. В 1928 г. С. М. Чечу­лин и С. С. Брюхоненко «оживили» голову собаки; изолированная голова лежала на блюде, выделяла слюну на жидкости, вливаемые в рот, язы­ком облизывала губы, моргала, настораживала уши при громких звуках. Голова прожила несколько часов.

Н. П. Кравков (1866-1924) в первом десятилетни XX века ввел в нау­ку ряд методов, основанных на использовании изолированных органов для изучения вопросов физиологии и фармакологии. Этими методами изучалась деятельность желез внутренней секреции, действие ядови­тых и лекарственных веществ и др. В настоящее время методы, пред­ложенные Н. П. Кравковым, распространены в лабораториях всего мира.

Изолированные органы (пальцы, уши, железы и т. д.) месяцами живут в искусственно созданных условиях. Для питания их используются спе­циальные физиологические растворы, насыщаемые кислородом и посту­пающие в кровеносные сосуды изолированных органов,

Культура тканей вне организма

Культурой тканей называется метод, дающий возможность выращивать вне организма кусочки тканей и даже отдельные клетки. На теоретиче­скую возможность такого метода указал А. Е. Голубев еще в 1874 г., а применил его впервые И. П. Скворцов в 1885 г. Методы культуры тка­ней в дальнейшем были усовершенствованы американскими биологами Г. Гаррисоном в 1907 г. и Д. Каррелем в 1910 г. н нашли широкое распространение во всем мире.

Для культуры тканей небольшие кусочки органов в строго стерильных условиях выделяют из организма, помещают в стеклянные камеры на специально приготовленные питательные среды и создают необходимый температурный режим. После некоторого Периода покоя клетки в куль­туре начинают интенсивно размножаться. Питательный материал для роста ткань получает из среды; в нее же поступают продукты жизнедея­тельности. Накопление их приводит культуру к старению. Образую­щиеся клетки становятся мельче. Если своевременно не сделать пересев (пассаж) в свежую среду, ткань погибает.

Интенсивность роста клеток в культуре тканей непомерно велика. Если обеспечить культуре необходимые условия, то комочек ткани в 1 мм3 за несколько лет мог бы разрастись на площади, превышающей поверхностьземного шара.

При благоприятных условиях содержания культуры тканей удается поддерживать на протяжении многих лет: при помощи пересевов ткань из сердца куриного эмбриона сохранялась живой в течение 25 лет, не­смотря на то, что средняя продолжительность жизни курицы намного короче. С 1951 г. в лабораториях культивируется штамм HeLa - ткань раковой опухоли матки '. Женщина, от которой ткань была получена, давно умерла, а ткань живет. Говоря о большой продолжительности жизни тканевых культур не следует забывать, что это жизнь не орга­низма, а последовательных генераций клеток.

Культуры тканей используются в научных исследованиях для выяс­нения многих вопросов теоретической и практической биологии и медицины. Так, с помощью культуры тканей были детально изучены все стадии митоза. Этот метод был использован также для изучения диффе­ренцировки клеток во время эмбрионального развития органов млекопи­тающих и птиц. Культуры тканей используются для решения многих вопросов цитологии, гистологии, эмбриологии, физиологии, онкологии. В тех случаях, когда у человека подозревается болезнь, связанная с на­рушением числа хромосом, с диагностической целью культивируют клет­ки крови и в них подсчитывают число хромосом. Для решения проблем мутагенеза соматических клеток также используются тканевые куль­туры.

Элементарные эволюционные факторы. Мутационный процесс и генетическая комбинаторика. Популяционные волны, изоляция6 дрейф генов, естественный отбор. Взаимодействия элементарных эволюционных факторов.

Элементарные эволюционные факторы – это стохастические (вероятностные) процессы, протекающие в популяциях, которые служат источниками первичной внутрипопуляционной изменчивости.

К основным ЭЭФ относятся: мутационный процесс, рекомбинации и давление мутаций. Эти факторы обеспечивают появление в популяциях новых аллелей (а также хромосом и целых хромосомных наборов). К дополнительным ЭЭФ относятся: популяционные волны, изоляция, эффект основателя, дрейф генов. Эти факторы обеспечивают эффект «бутылочного горлышка», способствующий изменению частот аллелей в популяции. К ЭЭФ относятся и другие процессы, способные изменить генетическую структуру популяции: миграции (поток генов), мейотический драйв и прочие.

МУТАЦИОННЫЙ ПРОЦЕСС

Мутационный процесс – это процесс возникновения в популяциях самых разнообразных мутаций: генных, хромосомных и геномных. Мутационный процесс является важнейшим элементарным эволюционным фактором, поскольку поставляет элементарный эволюционный материал – мутации. Именно мутации обеспечивают появление новых вариантов признака, именно мутации лежат в основе всех форм изменчивости.

Генетическая комбинаторика. В результате постоянных скрещиваний в по­пуляции возникает множество новых соче­таний аллелей. Эта генетическая комбина­торика многократно изменяет значение му­таций: они входят в новые геномы, оказыва­ются в разной генотипической среде (см. гл. 11). Потенциально число таких комбинаций имеющегося генетического материала в лю­бой популяции невообразимо велико, но реализуется лишь ничтожная часть из этого теоретически возможного числа вариантов

Дрейф генов. Случайные ненаправленные изменения частот аллелей в популяциях называются дрейфом генов в широком смысле этого слова.

Дрейфом генов в узком смысле слова Сьюэлл Райт назвал случайное изменение частоты аллелей при смене поколений в малых изолированных популяциях. В малых популяциях велика роль отдельных особей. Случайная гибель одной особи может привести к значительному изменению аллелофонда. Чем меньше популяция, тем больше вероятность флуктуации – случайного изменения частот аллелей. В сверхмалых популяциях по совершенно случайным причинам мутантный аллель может занять место нормального аллеля, т.е. происходит случайная фиксация мутантного аллеля.

В отечественной биологии случайное изменение частоты аллеля в сверхмалых популяциях некоторое время называли генетико-автоматическими (Н.П. Дубинин) или стохастическими процессами (А.С. Серебровский). Эти процессы были открыты и изучались независимо от С. Райта.

Дрейф генов доказан в лабораторных условиях. Например, в одном из С. Райта опытов с дрозофилой было заложено 108 микропопуляций – по 8 пар мушек в пробирке. Начальные частоты нормального и мутантного аллелей были равны 0,5. В течение 17 поколений случайным образом в каждой микропопуляции оставляли 8 пар мушек. По окончании эксперимента оказалось, что в 98 пробирках сохранился только нормальный аллель, в 10 пробирках – оба аллеля, а в 3 пробирках произошла фиксация мутантного аллеля.

В природных популяциях наличие дрейфа генов до сих пор не доказано. Поэтому разные эволюционисты по-разному оценивают вклад дрейфа генов в общий процесс эволюции.

Дрейф генов связан с утратой части аллелей и общим снижением уровня биоразнообразия. Следовательно, должны существовать механизмы, компенсирующие действие дрейфа генов.

Эффект Болдуина. Частным случаем дрейфа генов является эффект «бутылочного горлышка» – изменение частот аллелей в популяции.

Эффект бутылочного горлышка достигается за счет множества дополнительных ЭЭФ.

1. Популяционные волны.

Популяционными волнами (волнами жизни, волнами численности) называют колебания численности природных популяций. Различают следующие типы популяционных волн:

1. Апериодические с высокой амплитудой. Характерны для некоторых организмов с высокой скоростью размножения в благоприятных условиях и высокой смертностью в неблагоприятных условиях (r–стратегия). Например, у майского жука в течение 5 лет численность популяции может изменяться в 1 миллион раз!

2. Апериодические и периодические с низкой амплитудой. Характерны для некоторых организмов с низкой скоростью размножения и низкой смертностью независимо от условий (К–стратегия).

3. Периодические с высокой амплитудой. Встречаются у самых разнообразных организмов. Часто носят периодический характер, например, в системе «хищник–жертва». Могут быть связаны с экзогенными ритмами. Именно этот тип популяционных волн играет наибольшую роль в эволюции.

Историческая справка. Выражение «волны жизни» («Wave of life»), вероятно, употребил впервые исследователь южноамериканских пампасов Хэдсон (W.H. Hudson, 1872–1873). Хэдсон отметил, что в благоприятных условиях (свет, частые ливни) сохранилась обыкновенно выгорающая растительность; обилие цветов породило обилие шмелей, затем мышей, а затем и птиц, кормившихся мышами (в т.ч., кукушек, аистов, болотных сов). С.С. Четвериков обратил внимание на волны жизни, отметив появление в 1903 г. в Московской губернии некоторых видов бабочек, не обнаруживаемых там на протяжении 30…50 лет. Перед этим, в 1897 г. и несколько позже, отмечалось массовое появление непарного шелкопряда, оголившего громадные площади лесов и нанесшего существенный вред плодовым садам. В 1901 г. отмечалось появление в значительном количестве бабочки–адмирала. Результаты своих наблюдений он изложил в кратком очерке «Волны жизни» (1905).

Если в период максимальной численности популяции (например, миллион особей) появится мутация с частотой 10–6, то вероятность ее фенотипического проявления составит 10–12. Если в период спада численности до 1000 особей носитель этой мутации совершенно случайно выживет, то частота мутантного аллеля возрастет до 10–3. Эта же частота сохранится и в период последующего подъема численности, тогда вероятность фенотипического проявления мутации составит 10–6.

2. Изоляция. Обеспечивает проявление эффекта Болдуина в пространстве.

В большой популяции (например, с численностью миллион диплоидных особей) частота мутации порядка 10–6 означает, что примерно одна из миллиона особей является носителями нового мутантного аллеля. Соответственно, вероятность фенотипического проявления этого аллеля в диплоидной рецессивной гомозиготе составляет 10–12 (одна триллионная).

Если эту популяцию разбить на 1000 малых изолированных популяций по 1000 особей, то в одной из изолированных популяций наверняка окажется один мутантный аллель, и его частота составит 0,001. Вероятность его фенотипического проявления в ближайших последующих поколениях составит (10–3)2=10–6 (одна миллионная). В сверхмалых популяциях (десятки особей) вероятность проявления мутантного аллеля в фенотипе возрастает до (10–2)2=10–4 (одна десятитысячная).

Таким образом, лишь за счет изоляции малых и сверхмалых популяций шансы на фенотипическое проявление мутации в ближайших поколениях возрастут в тысячи раз. В то же время, трудно предположить, чтобы в разных малых популяциях совершенно случайно проявился в фенотипе один и тот же мутантный аллель. Скорее всего, каждая малая популяция будет характеризоваться высокой частотой одного или немногих мутантных аллелей: или a, или b, или c и т.д.

Естественный отбор — процесс, изначально определённый Чарльзом Дарвином как приводящий к выживанию и преимущественному размножению более приспособленных к данным условиям среды особей, обладающих полезными наследственными признаками. В соответствии с теорией Дарвина и современной синтетической теорией эволюции, основным материалом для естественного отбора служат случайные наследственные изменения — рекомбинация генотипов, мутации и их комбинации.

68 Естественный отбор. Формы естественного отбора. Творческая роль естественного отбора в эволюции.

Естественный отбор — процесс, изначально определённый Чарльзом Дарвином как приводящий к выживанию и преимущественному размножению более приспособленных к данным условиям среды особей, обладающих полезными наследственными признаками. В соответствии с теорией Дарвина и современной синтетической теорией эволюции, основным материалом для естественного отбора служат случайные наследственные изменения — рекомбинация генотипов, мутации и их комбинации С современных позиций естественный отбор можно охарактеризовать как процесс избирательного выживания и размножения организмов, следствием которого является совершенствование адаптаций и видообразование благодаря накоплению и интеграции полезных изменений признаков.





Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 1902 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2485 - | 2299 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.