1. Энергетическая.
Углеводы, например глюкоза, способны окисляться как в аэробных так и анаэробных условиях. Окисление углеводов обеспечивает организм 60% всей легко используемой энергии.
2. Структурная.
Примером являются гликозаминогликаны в составе протеогликанов, допустим, хондроитинсульфат, входящий в состав соединительной ткани.
3. Защитная.
Гиалуроновая кислота и другие гликозаминогликаны являются основным компонентом трущихся поверхностей суставов, входят в состав слизистых оболочек, находятся в сосудистой стенке.
4. Кофакторная.
Например, гепарин входит в состав липопротеинлипазы плазмы крови и ферментов свёртывания крови.
5. Гидроосмотическая.
Гетерополисахариды обладают отрицательным зарядом и высокой гидрофильностью. Это позволяет им удерживать молекулы воды, ионы кальция, магния и натрия в межклеточном веществе, обеспечивая необходимую упругость тканей.
6. Пластическая.
Биологическая роль нуклеиновых кислот заключается в том, что ДНК хранит наследственную информацию организма в виде последовательности дезоксирибонуклеотидов, различающихся азотистыми основаниями. В ДНК в закодированном виде записан соста всех белков организма. Каждой аминокислоте, входящей в состав белков, соответствует свой код в ДНК, а именно - три конкретных нуклеотида. Молекулы РНК переносят информацию от ДНК к местам клетки, где происходит синтез белка.
Биологическая роль нуклеиновых кислот начала выясняться в конце 40 - х - начале 50 - х годов, когда впервые было выяснено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация - каким-то образом закодированный приказ строить белковые молекулы определенного типа. Эти работы стали исходной точкой быстрого прогресса в области молекулярной генетики, приближающего нас к познанию процесса синтеза белка в клетках, размножения клеток путем деления и в конечном итоге воспроизведения всего сложного животного или растительного организма в том виде, который характерен для родителей этого организма. Подробное обсуждение этих проблем увело бы нас далеко в область биохимии, в общих же чертах роль ДНК и РНК выглядит следующим образом. Молекулы ДНК находятся в клеточных ядрах, они содержат наследственную информацию в виде различной последовательности нуклеотидов. ДНК играет роль матрицы, с которой отпечатываются копии молекул РНК, непосредственно участвующих в синтезе белков. Таким образом, молекулы РНК служат передатчиками от ДНК к местам клетки, где непосредственно осуществляется синтез белка.
Биологическая роль нуклеиновых кислот начала выясняться в конце 40 - х - начале 50 - х годов нашего столетия, когда впервые было установлено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация - приказ строить белковые молекулы определенного типа.
Биологическая роль нуклеиновых кислот начала выясняться в конце 40 - х - начале 50 - х годов нашего столетия, когда впервые было установлено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности.
Биологическая роль нуклеиновых кислот начала выясняться в конце 40 - х - начале 50 - х годов нашего столетия, когда впервые было установлено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация - приказ строить белковые молекулы определенного типа.
Но прежде чем перейти к рассмотрениюбиологической роли нуклеиновых кислот, необходимо остановиться на их составе и структуре. Это особо важно, так как биологические свойства нуклеиновых кислот вытекают в первую очередь из их химического состава и структуры
Биологическая роль нуклеиновых кислот начала выясняться в 40 - х годах этого столетия, когда впервые было установлено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить пбтомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация - каким-то образом закодированный приказ строить белковые молекулы определенного типа.
Биологическая роль нуклеиновых кислот начала выясняться в 40 - х годах этого столетия, когда впервые было установлено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация - каким-то образом закодированный приказ строить белковые молекулы определенного типа.
Несколько десятилетий томуназад биологическая роль нуклеиновых кислот была совершенно неясна, в настоящее же время установлено их первостепенное значение в живой природе.
Нуклеиновые кислоты были открыты около 100 лет назад в 1869 - 1870 гг.) немецким ученым Мишером, однако наиболее интересные данные, касающиеся их строения, их свойств и биологической роли, были получены за последние 10 - 15 лет, когда в биохимии и биологии стали широко применяться новейшие физические и химические методы исследования. Эти исследования выявиливажнейшую биологическую роль нуклеиновых кислот и показали, что биологическая роль этих кислот зависит от их состава и строения.
Значительно более сложным является определение последовательности нуклеотидов в полимерной цепи нуклеиновых кислот. Этот вопрос, чрезвычайно важный для дальнейшего изучениябиологической роли нуклеиновых кислот, разработан пока недостаточно. Для решения этой проблемы необходимо изыскание избирательных методов расщепления макромолекулы нуклеиновых кислот, что является сейчас одной из главных задач химии этого класса соединений. В настоящее время определена последовательность нуклеотидов только для одной низкомолекулярной рибонуклеиновой кислоты.