Статистическое назначение допуска требует прежде всего определить, какая доля собранных модулей может выходить за диапазон допусков на общий размер. Для практической реализации (без необходимости использования передовых методов) должны быть выполнены следующие требования:
- индивидуальные размеры могут рассматриваться как некоррелированные случайные переменные;
- цепочка размеров линейна;
- цепочка размеров имеет, по крайней мере, четыре звена;
- индивидуальные допуски являются величинами одного порядка;
- распределения индивидуальных размеров цепочки известны.
Очевидно, что некоторые из этих требований могут быть выполнены только тогда, когда изготовление рассматриваемых компонентов может контролироваться и постоянно отслеживаться. В случае изделий, находящихся в стадии разработки, при применении статистического установления допуска следует руководствоваться опытом и инженерными знаниями.
Примеры применения
Теорию статистического назначения допусков обычно применяют при сборке частей, для которых допуски суммируются, или в случаях с простым вычитанием допусков (например, вал и отверстие). Отрасли промышленности, которые используют статистическое назначение допусков: машиностроение, электроника и химическая промышленность. Теорию также применяют в компьютерном моделировании для определения оптимальных допусков.
Анализ временных рядов
Предмет анализа
Анализ временных рядов - это семейство методов для изучения совокупности наблюдений, сделанных последовательно во времени. Методы анализа временных рядов используют в следующих прикладных задачах:
- обнаружение запаздывания типичных фрагментов графика при статистическом исследовании коррелированности каждого наблюдения с непосредственно предшествующим ему наблюдением для каждого следующего один за другим периода запаздывания;
- обнаружение типичных фрагментов графика, которые являются циклическими или сезонными, для исследования причинных факторов в прошлом, которые могут повлиять на будущее;
- применение статистических методов для прогнозирования будущих наблюдений или для анализа причинных факторов, которые внесли наибольший вклад в изменения временного ряда.
Методы анализа временных рядов могут включать в себя простые «тренд-карты». В настоящем стандарте такие простые графические методы упоминаются в разделе «Описательная статистика» (4.2.1).
Область распространения
Анализ временных рядов используют для описания фрагментов данных временного ряда, для выявления выбросов (т. е. экстремальных значений, достоверность которых должна исследоваться), а также для анализа и внесения изменений, для обнаружения поворотных точек в тренде. Другое использование заключается в совместном анализе фрагментов одного временного ряда с фрагментами других временных рядов и решении задач регрессионного анализа.
Анализ временных рядов используют для прогнозирования будущих значений временных рядов, обычно с заданными верхними и нижними пределами, называемыми «интервалом прогноза». Этот интервал широко используют в задачах управления и часто применяют в автоматизированных процессах. В этом случае вероятностную модель привязывают к предшествующим временным рядам, прогнозируют будущие значения и затем определенные параметры процесса корректируют таким образом, чтобы поддерживать процесс в заданных границах с минимально возможными вариациями.
Достоинства
Методы анализа временных рядов могут быть полезны в планировании, в разработке систем управления, в обнаружении изменений в процессе, в прогнозировании и измерении результатов внешнего воздействия.
Анализ временных рядов также полезен для сравнения проектируемого выполнения процесса с предсказанными значениями во временном ряду, если необходимо ввести изменения.
Методы временных рядов могут обеспечивать понимание моделей типа «причина - следствие». Существуют методы для отделения систематических (или неслучайных) причин и для разбиения диаграмм временного ряда на циклические, сезонные и тренд-компоненты.
Анализ временных рядов часто полезен для понимания того, как процесс будет вести себя в указанных условиях и какое регулирование (если оно возможно) может направить процесс на достижение цели или какое регулирование может уменьшить изменчивость процесса.