Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


nbsp; В то время как для модификационного метода Эйлера

Тангенс угла наклона прямой Ĺ и прямой L равен

Ф(xm,ym,h)=½[f(xm,ym)+f(xm+h,ym+y¢mh)] 1.2

 

где y¢m=f(xm,ym) 1.3

 

Уравнение линии L при этом записывается в виде

 

y=ym+(x-xm)Ф(xm,ym,h),

 

так что

ym+1=ym+hФ(xm,ym,h). 1.4

 

Соотношения 1.2, 1.3, 1.4 описывают исправленный метод Эйлера.

 
 

Чтобы выяснить, насколько хорошо этот метод согласуется с разложением в ряд Тейлора, вспомним, что разложение в ряд функции f(x,y) можно записать следующим образом:

f(x,y)=f(xm,ym)+(x-xm)¶f/¶x+(y-ym)¶f/¶x+¼ 1.5

 

где частные производные вычисляются при x=xm и y=ym.

 

Подставляя в формулу 1.5 x=xm+h и y=ym+hy¢m и используя выражение 1.3 для y¢m, получаем

f(xm+h,ym+hy¢m)=f+hfx+hffy+O(h2),

 

где снова функция f и ее производные вычисляются в точке xm,ym. Подставляя результат в 1.2 и производя необходимые преобразования, получаем

Ф(xm,ym,h)=f+h/2(fx+ffy)+O(h2).

 

Подставим полученное выражение в 1.4 и сравним с рядом Тейлора

ym+1=ym+hf+h2/2(fx+ffy)+O(h3).

 

Как видим, исправленный метод Эйлера согласуется с разложением в ряд Тейлора вплоть до членов степени h2, являясь, таким образом, методом Рунге-Кутты второго порядка.

 

 

Рассмотрим модификационный метод Эйлера. Рассмотрим рис.3 где первоначальное построение сделано так же, как и на рис.2. Но на этот раз мы берем точку, лежащую на пересечении этой прямой и ординатой x=x+h/2. На рисунке эта точка образована через Р, а ее ордината равна y=ym+(h/2)y¢m. Вычислим тангенс угла наклона касательной в этой точке

 
 


Ф(xm,ym,h)=f+(xm+h/2,ym+h/2*y¢m), 1.6

 

где y¢m=f(xm,ym) 1.7

 

Прямая с таким наклоном, проходящая через Р, обозначена через L*. Вслед за тем, мы проводим через точку xm,ym прямую параллельную L*, и обозначаем ее через L0. Пересечение этой прямой с ординатой x=xm+h и даст искомую точку xm+1,ym+1. Уравнение прямой можно записать в виде y=ym+(x-xm)Ф(xm,ym,h),

где Ф задается формулой 1.6. Поэтому

       
   
 
 


ym+1=ym+hФ(xm,ym,h) 1.8

 

 

Соотношения 1.6, 1.7, 1.8 описывают так называемый модификационный метод Эйлера и является еще одним методом Рунге-Кутта второго порядка. Обобщим оба метода. Заметим, что оба метода описываются формулами вида

 

ym+1=ym+hФ(xm,ym,h) 1.9

 

и в обоих случаях Ф имеет вид

Ф(xm,ym,h)=a1f(xm,ym)+a2f(xm+b1h,ym+b2hy¢m), 1.10

где y¢m=f(xm,ym) 1.11

 

В частности, для исправленного метода Эйлера

 

a1=a2=1/2;

b1=b2=1.


nbsp; В то время как для модификационного метода Эйлера

 

a1=0, a2=1,

b1=b2=1/2.

 

Формулы 1.9, 1.10, 1.11 описывают некоторый метод типа Рунге-Кутты. Посмотрим, какого порядка метод можно рассчитывать получить в лучшем случае и каковы допустимые значения параметров a1, a2, b1 и b2.

 

Чтобы получить соответствие ряду Тейлора вплоть до членов степени h, в общем случае достаточно одного параметра. Чтобы получить согласование вплоть до членов степени h2, потребуется еще два параметра, так как необходимо учитывать члены h2fx и h2ffy. Так как у нас имеется всего четыре параметра, три из которых потребуются для создания согласования с рядом Тейлора вплоть до членов порядка h2, то самое лучшее, на что здесь можно рассчитывать - это метод второго порядка.

 

В разложении f(x,y) в ряд 1.5 в окрестности точки xm,ym положим x=xm+b1h,

y=ym+b2hf.

Тогда f(xm+b1h,ym+b2hf)=f+b1hfx+b2hffy+O(h2), где функция и производные в правой части равенства вычислены в точке xm,ym.

Тогда 1.9 можно переписать в виде ym+1=ym+h[a1f+a2f+h(a2b1fx+a2b2ffy)]+O(h3).

 

Сравнив эту формулу с разложением в ряд Тейлора, можно переписать в виде

 

ym+1=ym+h[a1f+a2f+h(a2b1fx+a2b2ffy)]+O(h3).

 

Если потребовать совпадения членов hf, то a1+a2=1.

Сравнивая члены, содержащие h2fx, получаем a2b1=1/2.

Сравнивая члены, содержащие h2ffy, получаем a2b2=1/2.

 

Так как мы пришли к трем уравнениям для определения четырех неизвестных, то одно из этих неизвестных можно задать произвольно, исключая, может быть, нуль, в зависимости от того, какой параметр взять в качестве произвольного.

 

Положим, например, a2=w¹0. тогда a1=1-w, b1=b2=1/2w и соотношения 1.9, 1.10, 1.11 сведутся к

 
 


ym+1=ym+h[(1-w)f(xm,ym)+wf(xm+h/2w,ym+h/2wf(xm,ym))]+O(h3) 1.12

 

 

Это наиболее общая форма записи метода Рунге-Кутта второго порядка. При w=1/2 мы получаем исправленный метод Эйлера, при w=1 получаем модификационный метод Эйлера. Для всех w, отличных от нуля, ошибка ограничения равна

 
 


et=kh3 1.13

 

Методы Рунге-Кутта третьего и четвертого порядков можно вывести совершенно аналогично тому, как это делалось при выводе методов первого и второго порядков. Мы не будем воспроизводить выкладки, а ограничимся тем, что приведем формулы, описывающие метод четвертого порядка, один из самых употребляемых методов интегрирования дифференциальных уравнений. Этот классический метод Рунге-Кутта описывается системой следующих пяти соотношений

 
 


ym+1=ym+h/6(R1+2R2+2R3+R4) 1.14

где R1=f(xm,ym), 1.15

R2=f(xm+h/2,ym+hR1/2), 1.16

R3=f(xm+h/2,ym+hR2/2), 1.17

R4=f(xm+h/2,ym+hR3/2). 1.18

 

Ошибка ограничения для этого метода равна et=kh5

так что формулы 1.14-1.18 описывают метод четвертого порядка. Заметим, что при использовании этого метода функцию необходимо вычислять четыре раза.

 



<== предыдущая лекция | следующая лекция ==>
Качественное определение наполнителя | Информация для студентов заочного отделения
Поделиться с друзьями:


Дата добавления: 2015-11-23; Мы поможем в написании ваших работ!; просмотров: 690 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2511 - | 2383 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.