Лекции.Орг
 

Категории:


Электрогитара Fender: Эти статьи описывают создание цельнокорпусной, частично-полой и полой электрогитар...


Построение спирали Архимеда: Спираль Архимеда- плоская кривая линия, которую описывает точка, движущаяся равномерно вращающемуся радиусу...


Объективные признаки состава административного правонарушения: являются общественные отношения, урегулированные нормами права и охраняемые...

Защитные меры в электроустановках



 

Электрическиесети и установки должны быть выполнены так, чтобы токоведущие части их были недоступны для случайного прикосновения.

Недоступность токоведущих частей достигается путем их надежной изоляции, применения защитных ограждений (кожухов, крышек, сеток и т.д.), расположения токоведущих частей на недоступной высоте.

В установках напряжением до 1000 В достаточную защиту обеспечивает применение изолированных проводов.

Для изоляции токоведущих частей (машин, аппаратов, приборов, проводов, кабелей) применяются различные изоляционные материалы и изделия, отличающиеся диэлектрическими и особыми физико-механическими свойствами (резина, пластмассы, бумага, фарфор, стекло, асбест, эбонит, стеклоткань, смолы, лаки, краски).

Надежность и безопасность работы электрооборудования в значительной мере зависит и от состояния изоляции токоведущих частей. Повреждение ее является основной причиной многих несчастных случаев. Поэтому большое внимание уделяется контролю состояния изоляции.

Контроль изоляции– это измерение её активного или омического сопротивления с целью обнаружить дефекты и предупредить замыкания на землю и короткие замыкания.

Существует два вида контроля: периодический и постоянный.

Постоянный контроль– это наблюдение за сопротивлением изоляции под рабочим напряжением в течение всего времени работы электроустановки без автоматического отключения.

Периодический контроль состояния изоляции электроустановок напряжением до 1000 В производится не реже одного раза в три года.

Состояние изоляции проверяется также перед вводом электроустановок в эксплуатацию и после длительного пребывания в нерабочем положении.

Измерение сопротивления изоляции производят при помощи омметра (рис. 91) или мегомметра (рис. 92).

Изоляцию электроустановок испытывают напряжением промышленной частоты, как, правило, в течение 1 мин. Дальнейшее воздействие может испортить изоляцию.

Испытание изоляции повышенным напряжением производят при капитальном и текущем ремонтах электрооборудования, а также в случаях, когда во время работы обнаружен дефект.

Одним из способов снижения опасности поражения электрическим током является применение малых напряжений 12, 36 и 42 В для ручного электрифицированного инструмента, ручных переносных ламп и ламп местного освещения.

Электрическое разделение сети также уменьшает опасность поражения человека электрическим током. Разветвленная электрическая сеть большой протяженности имеет значительную электрическую емкость. В этом случае даже прикосновение к одной фазе является очень опасным. Если сеть разделить на ряд небольших сетей такого же напряжения, которые будут обладать небольшой емкостью и высоким сопротивлением изоляции, то опасность поражения значительно снижается. Обычно электрическое разделение сетей осуществляется путем подключения отдельных электроустановок через разделительные трансформаторы. Область применения защитного разделения сетей – электроустановки до 1000 В.

Во многих элементах электроустановок (например, кабельные вводы, распределительные устройства, провода воздушных линий и т.д.) средой, изолирующей человека от токоведущих частей, является воздух. В подобных случаях безопасность обеспечивается организационными мероприятиями, жестко регламентирующими приближение человека на опасные для него расстояния к токоведущим частям, а также путем расположения токоведущих частей на недоступной высоте или недоступном месте.

К специальным защитным мерам от воздействия электрического тока относятся: защитное заземление, защитное зануление, защитное отключение, блокировка, сигнализация и маркировка, использование изолирующих и ограждающих электрозащитных средств.

 

Защитное заземление

 

Защитное заземление - преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Цель защитного заземления - снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, нормально не находящихся под напряжением, но могущих оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие, ток, проходящий через человека, при прикосновении к корпусам.

Применяется также заземление для защиты от действия атмосферного электричества электрооборудования, зданий и сооружений.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше – с любым режимом нейтрали.

Заземляющее устройство – это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Различают естественные и искусственные заземлители.

Для заземляющих устройств в первую очередь должны быть использованы естественные заземлители:

§ водопроводные трубы, проложенные в земле;

§ металлические конструкции зданий и сооружений, имеющие надежное соединение с землей;

§ металлические оболочки кабелей (кроме алюминиевых);

§ обсадные трубы артезианских скважин.

Запрещается в качестве заземлителей использовать трубопроводы с горючими жидкостями и газами, трубы теплотрасс.

Естественные заземлители должны иметь присоединение к заземляющей сети не менее чем в двух разных местах.

В качестве искусственных заземлителей применяют:

§ стальные трубы диаметром 3-5 см, толщиной стенок 3,5 мм, длиной 2-3 м;

§ полосовую сталь толщиной не менее 4 мм;

§ угловую сталь толщиной не менее 4 мм;

§ прутковую сталь диаметром не менее 10 мм, длиной до 10 м и более.

Для искусственных заземлителей в агрессивных почвах (щелочных, кислых и др.), где они подвергаются усиленной коррозии, применяются медь, омедненный или оцинкованный металл.

В качестве искусственных заземлителей нельзя применять алюминиевые оболочки кабелей, а также голые алюминиевые проводники, так как в почве они окисляются, а окись алюминия – изолятор.

Каждый отдельный проводник, находящийся в контакте с землей, называется одиночным заземлителем, или электродом. Если заземлитель состоит из нескольких электродов, соединенных между собой параллельно, он называется групповым заземлителем.

Для погружения в землю вертикальных электродов предварительно роют траншею глубиной 0,7–0,8 м, после чего забивают трубы или уголки с помощью механизмов. Стальные стержни диаметром 10-12 мм, заглубляют в землю с помощью специального приспособления, а более длинные с помощью вибратора. Верхние концы погруженных в землю вертикальных электродов соединяют стальной полосой методом сварки.

Устройство защитного заземления может быть осуществлено двумя способами: контурным расположением заземляющих проводников и выносным.

При контурном размещении заземлителей обеспечивается выравнивание потенциалов при однофазном замыкании на землю. Кроме того, благодаря взаимному влиянию заземлителей уменьшается напряжение прикосновения и напряжение шага в защищаемой зоне. Выносные заземления этими свойствами не обладают. Зато при выносном способе размещения есть выбор места для заглубления заземлителей.

В помещениях заземляющие проводники следует располагать таким образом, чтобы они были доступны для осмотра и надежно защищены от механических повреждений. На полу помещений заземляющие проводники укладывают в специальные канавки. В помещениях, где возможно выделение едких паров и газов, а также в помещениях с повышенной влажностью заземляющие проводники прокладывают вдоль стен на скобах в 10 мм от стены.

Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается.

Сопротивление заземляющего устройства представляет собой сумму сопротивлений заземлителя относительно земли и заземляющих проводников.

Сопротивление заземлителя относительно земли есть отношение напряжения на заземлителе к току, проходящему через заземлитель в землю.

Величина сопротивления заземлителя зависит от удельного сопротивления грунта, в котором заземлитель находится; типа размеров и расположения элементов, из которых заземлитель выполнен; количества и взаимного расположения электродов.

Величина сопротивления заземлителей может изменяться в несколько раз в зависимости от времени года. Наибольшее сопротивление заземлители имеют зимой при промерзании грунта и в засушливое время.

Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом – при суммарной мощности генераторов и трансформаторов 100 кВА и менее, и 4 Ом – во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

В установках свыше 1000 В допускается сопротивление заземления Rз ≤ 125 / Iз Ом, но не более 4 Ом или 10 Ом.

В установках свыше 1000 В с большими токами замыкания на землю сопротивление заземляющего устройства не должно быть более 0,5 Ом для обеспечения автоматического отключения участка сети в случае аварии.

 





Дата добавления: 2015-11-05; просмотров: 231 | Нарушение авторских прав


Рекомендуемый контект:


Похожая информация:

Поиск на сайте:


© 2015-2019 lektsii.org - Контакты - Последнее добавление

Ген: 0.004 с.