Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Взаимодействие частиц радиоактивного




ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

Итак, мы установили, что в процессе радиоактивного распада атомы испускают потоки элементарных частиц (α, β, р, n) и квантов электромагнитного излучения, обладающих огромной энергией. Принимая во внимание, что время существования этих частиц и квантов весьма невелико, следует задать вопрос: куда пропадают эти частицы и кванты и где девается их энергия?

Все частицы и кванты, испускаемые при радиоактивном распаде, проходя через различные среды, взаимодействуют с электронами и ядрами атомов вещества. Это взаимодействие проявляется в двух первичных эффектах: ионизации атомов и их возбуждении, т.е. в переводе одного из электронов на более высокий энергетический уровень. По мере проникновения частиц радиоактивного излучения вглубь вещества, в результате многократных «столкновений», кинетическая энергия частиц постепенно уменьшается до значения средней кинетической энергии теплового движения молекул среды. После этого они становятся неотличимыми от частиц среды. α-частица присоединяет два электрона и превращается в атом гелия. Протон присоединяет электрон и становится атомом водорода. Электрон остаётся в свободном состоянии или присоединяется к положительно заряженному иону. Позитрон аннигилирует, т.е. соединяется с электроном. При этом частицы исчезают, а рождается два γ-кванта.

Такой механизм взаимодействия радиоактивного излучения, приводящий к постепенному уменьшению скорости движения час-тиц, получил название ионизационного торможения, а все виды излучения объединяются под общим названием ионизирующего излучения.

Первичные процессы ионизации и возбуждения атомов вызывают вторичные эффекты:

а) появление свободных электронов, способных вызывать вторичную ионизацию и возбуждение;

б) переход возбуждённых атомов в основное состояние и соответственно появление характеристического рентгеновского и оптического электромагнитного излучения;

в) активация молекул, приводящая к фотохимическим реакциям;

г) явление радиолюминесценции;

д) увеличение скорости теплового движения частиц среды;

е) нарушение структуры молекул вещества, в частности, радиолиз воды, который заключается в ионизации и последующем распаде ионизированной молекулы воды с образованием ненасыщенных радикалов и , которые не несут электрических зарядов, но имеют ненасыщенные валентности, и поэтому обладают исключительно высокой химической активностью. При этом образуются также соединения типа Н2О2 (перекись водорода) и (гидроперекись), которые тоже являются сильными окислителями.

Следует отметить, что вторичные эффекты могут вызвать аналогичные процессы третьего порядка и т.д. до тех пор, пока это будет

энергетически возможно.

В целом, ионизационная способность радиоактивных излучений зависит от энергии частиц, их заряда, а также свойств среды и оценивается тремя взаимосвязанными величинами:

1) Удельная ионизация или линейная плотность ионизации, ; (м -1, см –1) – число пар ионов, создаваемых ионизирующим излучением на пути единичной длины.

2) Удельные ионизационные потери или линейная тормозная способность, , [S]=Дж/м, эВ/см – количество энергии, теряемое частицей на пути единичной длины.

3) Средний линейный пробег или пробег частиц, R, [R] = м, см, мм, км – это путь частицы в данном веществе до момента, когда её средняя кинетическая энергия не сравняется со средней кинетической энергией теплового движения.

 

Дадим краткую характеристику ионизирующих излучений.

Удельная ионизация α-частиц в воздухе i α = 2 ÷ 8 104 см –1, что соответствует Sα = 2 ÷ 8 104 см –1×34 эВ = 0,7 ÷ 2,7 МэВ/см. Пробег α-частиц зависит от их энергии и в воздухе составляет 2 ÷ 10 см, в воде и биотканях 10 ÷ 100 мкм. Так как α-частицы данного радиоактивного вещества имеют примерно одинаковую энергию, то в однородной среде они проникают приблизительно на одинаковую глубину (рис.6).

Значение удельных ионизационных потерь с глубиной изменяется неравномерно. Такой ход кривой связан с уменьшением скорости α-частиц по мере проникновения в вещество, что увеличивает вероятность взаимодействия α-частицы с атомами среды (рис.7).

Возможно взаимодействие α-частиц с ядрами атомов среды, при

этом происходят ядерные реакции и рассеяние α-частиц, но это значительно более редкий процесс, чем ионизация.

Т.к. ионизационная способность α-частиц высокая, а глубина проникновения мала, то для защиты от α-излучения может быть использована плотная бумага, одежда, полиэтиленовая плёнка и т.д.

β-частицы, имеющие единичный элементарный заряд и меньшую энергию, обладают и меньшей ионизационной способностью i β = 50 ÷ 250 см –1. Это означает, что β-излучение проникает в вещество на бо'льшую глубину: для воздуха пробег составляет от десятков сантиметров до десятков метров, в воде и биотканях Rβ = 10 ÷ 15 мм.

β-частицы имеют разные значения энергии и поэтому проникают в однородную среду на разную глубину. Изменение числа β-частиц по мере их проникновения в вещество будет иметь вид (рис.8).

Взаимодействие β-излучения с веществом, наряду с ионизацией и возбуждением атомов, приводит так же к образованию тормозного рентгеновского излучения, возникновению черенковского свечения и явлению аннигиляции. Возникающие в результате аннигиляции два γ-кванта имеют энергию не меньше удвоенной энергии покоя β-частицы, которая равна 0,51 Мэв. Кроме того, следует отметить сильное рассеяние β-частиц на электронах вещества и, как следствие, сильное искривление их траектории. Учитывая все потери энергии β-излучения, можно считать, что интенсивность пучка β-излучения по мере его проникновения вглубь вещества уменьшается вначале по экспоненциальному закону – типа закона Бугера-Ланберта, а затем на глубине пробега R β-частицы быстро теряют энергию.

Защитой от β-излучения служат экраны из алюминия, оргстекла, дерева и т.п. толщиной порядка 10 мм.

Для оценки поглощательных свойств материалов используют понятие «слой половинного поглощения», т.е. слой, который уменьшает интенсивность излучения в 2 раза. Например, для β-излучения фосфора слой половинного поглощения в алюминии Δ = 0,4 мм; в воде Δ = 1,1мм.

К ионизирующему излучению относится и пучок нейтронов. В связи с отсутствием заряда, первичная ионизирующая способность нейтронов мала. Это означает, что проникающая способность соответственно велика. Ионизационный эффект нейтронов обусловлен, в основном, вторичными процессами. Благодаря отсутствию заряда нейтроны легко вступают во взаимодействие с ядром, в результате чего образуется поток заряженных частиц и γ-излучение, которые обладают большой ионизирующей способностью. Первичными процессами взаимодействия нейтронов с веществом являются: а) появление ядер отдачи (упругое взаимодействие); б) испускание одного или двух γ-квантов (неупругое соударение); в) ядерные реакции, которые сопровождаются испусканием , и γ-излучения.

.

Лучшей защитой от нейтронного излучения являются водородосодержащие материалы: полиэтилен, парафин, вода и т.д.

Ионизирующее действие протонов подобно действию α-частиц.

 

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 621 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2223 - | 2152 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.