Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Защита от пассивных помех, отражений от «местных предметов» и метеообразований




4.5.1.1. Физические основы, лежащие в основе компенсации сигналов, отраженных от пассивных помех и «местных предметов»

При работе первичных радиолокаторов (ПРЛ) наблюдается явление отражения электромагнитных волн, излучаемых антенной, от объектов, электрические параметры которых отличаются от параметров среды распространения радиоволн. В частности, такими объектами являются «местные предметы», гидрометеоры (облака, дождь, град, снег), другие объекты естественного происхождения, а также специально создаваемые помеховые сигналы. В дальнейшем все перечисленные виды сигналов будем называть пассивными помехами (ПП). Интенсивность ПП может превышать на 30-80 дБ уровень собственных шумов приемника, что приводит к его перегрузке и потере полезного сигнала.

Отраженные от целей сигналы и маскирующие пассивные по­мехи имеют определенные отличия, связанные с различиями целей и отражателей, создающих пассивную помеху. К числу этих различий можно отнести:

1. Распределенный характер мешающих отражателей и близкий к сосредоточенному блестящих элементов цели. Поэтому, повышая разрешающую способность по координатам и сокращая при этом размеры разрешаемого объема (во всяком случае, до размеров, превышающих размеры самолета), можно добиться улучшения наблюдаемости сигнала на фоне пассивных помех.

2. Отличия в поляризации отраженных сигналов наблюдаются, если пассивная помеха создается, например, гидрометеорами (дождь, тучи), состоящими из мелких капель, имеющих форму шара. Если гидрометеоры облучаются колебаниями с круговой поляризацией, то они отражают колебания также с круговой поляризацией, но с обратным (если смотреть в направлении распро­странения волны) вращением плоскости поляризации.

Если при­емная антенна не воспринимает колебания с такой поляризацией, она тем не менее может принимать колебания от целей, обладаю­щих несимметрией структуры.

3.Различия в скорости перемещения мешающих отражателей и цели.

Скорость перемещения наземных мешающих отражателей
относительно наземной радиолокационной станции равна нулю,
в то время как представляющие практический интерес цели пере­мещаются с достаточно большой скоростью.

Если пассивная помеха создается противорадиолокационными отражателями, то эти отражатели, будучи сброшены с самолета, быстро теряют первоначальную скорость, приобретая скорость, близкую к скорости ветра. Поскольку скорость ветра не постоян­на по высоте, в соответствии с высотным перепадом (градиентом) этой скорости имеет место разброс скоростей противорадиолокационных отражателей.

 

 

Полезный сигнал (сигнал, отраженный от воздушного судна) и пассивная помеха являются результатом вторичного излучения электромагнитной энергии.

Основное различие сигналов заложено в частотах отраженных сигналов и обусловлено разными радиальными составляющими скоростей движения цели и источников пассивных помех. Различия в радиальных скоростях целей и отра­жателей имеются и могут быть использованы для селекции по ско­рости. Селекцию по скорости (иначе по эффекту движения цели) называют селекцией движущихся целей (СДЦ).

 

 

Пусть в точке О (рис.4.64) находится передатчик, в точке А – объект, движущийся со скоростью . Будем полагать, что объект движется равномерно и прямолинейно с радиальной скоростью (объект удаляется от РЛС). График движения изображен на рис.4.65, а сплошной линией. Пунктиром показан график распространения электромагнитных колебаний.

Из рисунка 4.65, б видно, что происходит трансформация временного масштаба, т.е. растяжение колебаний, отраженных от цели, относительно излученных РЛС. Для приближающейся цели ( < 0) происходит сжатие временного масштаба. Наряду с трансформацией временного масштаба наблюдается уменьшение амплитуды отраженного сигнала.

В соответствии с трансформацией масштаба времени изменяется зависимость принимаемых колебаний Uпр.(t) по сравнению с излучаемыми U(t). В случае, если излучаются гармонические колебания

имеем следующий результат при приеме

, (4.41)

где , что соответствует трансформации частоты (эффект Доплера).

Условимся выражение для частоты принимаемых колебаний записывать в следующем виде:

,

где допплеровская поправка частоты (частота Доплера)

положительна при Vp > 0 и отрицательна при Vp < 0. При ½ Vp½<< с можно полагать, что

. (4.42)

В принципе для выделения сигналов движущихся целей можно использовать изменение несущей частоты, частоты повторения импульсов и длительности импульсов, которые наблюдаются при отражении зондирующего сигнала от таких объектов. Однако последние два эффекта очень малы и обнаружить их трудно. Практически представляется возможным зафиксировать изменение несущей частоты. Таким образом, частота Доплера является основным, хотя и не единственным, информативным параметром, с помощью которого осуществляется селекция движущихся целей на фоне пассивных помех.

Для импульсной последовательности (рис.4.66.) происходит растяжение промежутка между соседними импульсами в раз, так, что этот промежуток получает приращение

 

 

 

Численно изменение промежутка между импульсами за счет скоростной де­формации сигнала невелико. Например, для Т = 10-3 сек, v = 150 м/сек и с = 3×108 м/сек оно составляет 10-9 сек, т. е. ве­личину одного порядка с периодом колебаний высокой частоты. Это значит, что деформацию сигнала можно заметить лишь по изменению фазы колебаний высокой частоты. Чтобы использовать эту возможность, предъявляются достаточно жесткие требования к фазовой структуре высокочастотных колебаний, иначе — к их когерентности.

Различают несколько видов обеспечения когерентности колебаний.

1. Истинная внутренняя когерентность достигается тем, что колебания создаются стабильным задающим генератором, после которого стоит усилитель мощности с устойчивой фазовой характеристикой.

2. Эквивалентная внутренняя когерентность достигается тем,что генератор с самовозбуждением вырабатывает последовательность импульсов постоянной несущей частоты со случайными на­чальными фазами. Начальная фаза каждого зондирующего импульса запоминается на время приема отраженных сигналов до следующего зондирования. Путем соответствующей обработки принимаемого колебания эта фаза исключается и принимаемые колебания оказываются практически такими же, как и в случае ис­тинной когерентности.

3. Внешняя когерентность достигается тем, что информация о случайной начальной фазе зондирующего импульса извлекается из приходящих от пассивных отражателей колебаний.

Принципы технической реализации эквивалентной внутренней и внешней когерентности подробнее развиваются далее. Пока это не будет оговорено особо, будем полагать в дальнейшем, что имеет место истинная внутренняя когерентность.

При импульсной модуляции излучаемых колебаний эффект Доплера проявляется в сдвиге спектра частот на допплеровскую частоту и в изменении фазы излучаемых колебаний от одного периода повторения импульсов к другому относительно начальной фазы излучаемых колебаний. Названные эффекты иллюстрируются на рис. 4.67 и 4.68.

 

 

Наличие отражений от пассивных помех не позволяет решать задачи обнаружения и измерения координат воздушных судов без применения систем селекции движущихся целей (СДЦ).

 

 

 

На рис.4.69. изображены виды индикатора кругового обзора с выключенной(а) и включенной(б) системой СДЦ.

Рис.4.69





Поделиться с друзьями:


Дата добавления: 2015-10-20; Мы поможем в написании ваших работ!; просмотров: 1751 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2362 - | 2170 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.