Представление числовых данных в памяти ЭВМ
Для представления информации в памяти ЭВМ (как числовой, так и не числовой) используется двоичный способ кодирования.
Элементарная ячейка памяти ЭВМ имеет длину 8 бит (байт). Каждый байт имеет свой номер (его называют адресом). Наибольшую последовательность бит, которую ЭВМ может обрабатывать как единое целое, называют машинным словом. Длина машинного слова зависит от разрядности процессора и может быть равной 16, 32, 64 битам и т.д.
Кодирование символов
Для кодирования символов достаточно одного байта. При этом можно представить 256 символов (с десятичными кодами от 0 до 255). Набор символов персональных ЭВМ, совместимых с IBM PC, чаще всего является расширением кода ASCII (American Standard Code for Information Interchange — стандартный американский код для обмена информацией). В настоящее время используются и двухбайтовые предсталения символов.
Двоично-десятичное кодирование
В некоторых случаях при представлении чисел в памяти ЭВМ используется смешанная двоично-десятичная "система счисления", где для хранения каждого десятичного знака нужен полубайт (4 бита) и десятичные цифры от 0 до 9 представляются соответствующими двоичными числами от 0000 до 1001. Например, упакованный десятичный формат, предназначенный для хранения целых чисел с 18-ю значащими цифрами и занимающий в памяти 10 байт (старший из которых знаковый), использует именно этот вариант.
Представление целых чисел в дополнительном коде
Другой способ представления целых чисел — дополнительный код. Диапазон значений величин зависит от количества бит памяти, отведенных для их хранения. Например, величины типа Integer (все названия типов данных здесь и ниже представлены в том виде, в каком они приняты в языке программирования Turbo Pascal. В других языках такие типы данных тоже есть, но могут иметь другие названия) лежат в диапазоне от -32768 (-215) до 32767 (215 - 1) и для их хранения отводится 2 байта (16 бит); типа LongInt — в диапазоне от -231 до 231 - 1 и размещаются в 4 байтах (32 бита); типа Word — в диапазоне от 0 до 65535 (216 - 1) (используется 2 байта) и т.д.
Как видно из примеров, данные могут быть интерпретированы как числа со знаком, так и без знака. В случае представления величины со знаком самый левый (старший) разряд указывает на положительное число, если содержит нуль, и на отрицательное, если — единицу.
Вообще, разряды нумеруются справа налево, начиная с 0. Ниже показана нумерация бит в двухбайтовом машинном слове.
Дополнительный код положительного числа совпадает с его прямым кодом. Прямой код целого числа может быть получен следующим образом: число переводится в двоичную систему счисления, а затем его двоичную запись слева дополняют таким количеством незначащих нулей, сколько требует тип данных, к которому принадлежит число.
Например, если число 37(10) = 100101(2) объявлено величиной типа Integer (шестнадцатибитовое со знаком), то его прямым кодом будет 0000000000100101, а если величиной типа LongInt (тридцатидвухбитовое со знаком), то его прямой код будет 00000000000000000000000000100101. Для более компактной записи чаще используют шестнадцатеричное представление кода. Полученные коды можно переписать соответственно как 0025(16) и 00000025(16).
Дополнительный код целого отрицательного числа может быть получен по следующему алгоритму:
1. записать прямой код модуля числа;
2. инвертировать его (заменить единицы нулями, нули — единицами);
3. прибавить к инверсному коду единицу.
Например, запишем дополнительный код числа -37, интерпретируя его как величину типа LongInt (тридцатидвухбитовое со знаком):
1. прямой код числа 37 есть 00000000000000000000000000100101;
2. инверсный код 11111111111111111111111111011010;
3. дополнительный код 11111111111111111111111111011011 или FFFFFFDB(16).
При получении числа по его дополнительному коду прежде всего необходимо определить его знак. Если число окажется положительным, то просто перевести его код в десятичную систему счисления. В случае отрицательного числа необходимо выполнить следующий алгоритм:
1. вычесть из кода числа 1;
2. инвертировать код;
3. перевести в десятичную систему счисления. Полученное число записать со знаком минус.
Примеры. Запишем числа, соответствующие дополнительным кодам:
1. 0000000000010111. Поскольку в старшем разряде записан нуль, то результат будет положительным. Это код числа 23.
2. 1111111111000000. Здесь записан код отрицательного числа. Исполняем алгоритм: 1) 1111111111000000(2) - 1(2) = 1111111110111111(2); 2) 0000000001000000; 3) 1000000(2) = 64(10).
Ответ: -64.