Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Представление целых чисел в дополнительном коде




Представление числовых данных в памяти ЭВМ

 

Для представления информации в памяти ЭВМ (как числовой, так и не числовой) используется двоичный способ кодирования.

Элементарная ячейка памяти ЭВМ имеет длину 8 бит (байт). Каждый байт имеет свой номер (его называют адресом). Наибольшую последовательность бит, которую ЭВМ может обрабатывать как единое целое, называют машинным словом. Длина машинного слова зависит от разрядности процессора и может быть равной 16, 32, 64 битам и т.д.

Кодирование символов

Для кодирования символов достаточно одного байта. При этом можно представить 256 символов (с десятичными кодами от 0 до 255). Набор символов персональных ЭВМ, совместимых с IBM PC, чаще всего является расширением кода ASCII (American Standard Code for Information Interchange — стандартный американский код для обмена информацией). В настоящее время используются и двухбайтовые предсталения символов.

Двоично-десятичное кодирование

В некоторых случаях при представлении чисел в памяти ЭВМ используется смешанная двоично-десятичная "система счисления", где для хранения каждого десятичного знака нужен полубайт (4 бита) и десятичные цифры от 0 до 9 представляются соответствующими двоичными числами от 0000 до 1001. Например, упакованный десятичный формат, предназначенный для хранения целых чисел с 18-ю значащими цифрами и занимающий в памяти 10 байт (старший из которых знаковый), использует именно этот вариант.

Представление целых чисел в дополнительном коде

Другой способ представления целых чисел — дополнительный код. Диапазон значений величин зависит от количества бит памяти, отведенных для их хранения. Например, величины типа Integer (все названия типов данных здесь и ниже представлены в том виде, в каком они приняты в языке программирования Turbo Pascal. В других языках такие типы данных тоже есть, но могут иметь другие названия) лежат в диапазоне от -32768 (-215) до 32767 (215 - 1) и для их хранения отводится 2 байта (16 бит); типа LongInt — в диапазоне от -231 до 231 - 1 и размещаются в 4 байтах (32 бита); типа Word — в диапазоне от 0 до 65535 (216 - 1) (используется 2 байта) и т.д.

Как видно из примеров, данные могут быть интерпретированы как числа со знаком, так и без знака. В случае представления величины со знаком самый левый (старший) разряд указывает на положительное число, если содержит нуль, и на отрицательное, если — единицу.

Вообще, разряды нумеруются справа налево, начиная с 0. Ниже показана нумерация бит в двухбайтовом машинном слове.

                               
                               

Дополнительный код положительного числа совпадает с его прямым кодом. Прямой код целого числа может быть получен следующим образом: число переводится в двоичную систему счисления, а затем его двоичную запись слева дополняют таким количеством незначащих нулей, сколько требует тип данных, к которому принадлежит число.

Например, если число 37(10) = 100101(2) объявлено величиной типа Integer (шестнадцатибитовое со знаком), то его прямым кодом будет 0000000000100101, а если величиной типа LongInt (тридцатидвухбитовое со знаком), то его прямой код будет 00000000000000000000000000100101. Для более компактной записи чаще используют шестнадцатеричное представление кода. Полученные коды можно переписать соответственно как 0025(16) и 00000025(16).

Дополнительный код целого отрицательного числа может быть получен по следующему алгоритму:

1. записать прямой код модуля числа;

2. инвертировать его (заменить единицы нулями, нули — единицами);

3. прибавить к инверсному коду единицу.

Например, запишем дополнительный код числа -37, интерпретируя его как величину типа LongInt (тридцатидвухбитовое со знаком):

1. прямой код числа 37 есть 00000000000000000000000000100101;

2. инверсный код 11111111111111111111111111011010;

3. дополнительный код 11111111111111111111111111011011 или FFFFFFDB(16).

При получении числа по его дополнительному коду прежде всего необходимо определить его знак. Если число окажется положительным, то просто перевести его код в десятичную систему счисления. В случае отрицательного числа необходимо выполнить следующий алгоритм:

1. вычесть из кода числа 1;

2. инвертировать код;

3. перевести в десятичную систему счисления. Полученное число записать со знаком минус.

Примеры. Запишем числа, соответствующие дополнительным кодам:

1. 0000000000010111. Поскольку в старшем разряде записан нуль, то результат будет положительным. Это код числа 23.

2. 1111111111000000. Здесь записан код отрицательного числа. Исполняем алгоритм: 1) 1111111111000000(2) - 1(2) = 1111111110111111(2); 2) 0000000001000000; 3) 1000000(2) = 64(10).
Ответ: -64.





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 402 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2514 - | 2318 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.