Известный специалист по тендерной социологии Г.Г. Силласте1' предлагает иную классификацию. У нее выборка подразделяется на вероятную (случайную) и целенаправленную. К первой относятся четыре метода: 1) собственно случайный отбор (для генсовокупности не более 800 единиц), который подразделяется на а) случайно-бесповторный и б) случайно-повторный методы; 2) механическая выборка; 3) серийная выборка; 4) гнездовая выборка. Во вторую включены: 1) репрезентативная, 2) квотная и 3) стихийная выборки (рис. 2.1).
В статистической науке в зависимости от способа отбора различают выборки следующих типов:
1) случайная выборка с возвратом;
2) случайная выборка без возврата;
3) механическая;
4) типическая;
5) серийная
В маркетинге, по мнению Е.П. Голубкова, при формировании выборки используются вероятностные (случайные) и невероятностные (неслучайные) методы. Если все единицы выборки имеют известный шанс (вероятность) быть включенными в выборку, то выборка называется вероятностной. Если эта вероятность неизвестна, то выборка называется невероятностной. Вероятностные методы включают: простой случайный отбор, систематический отбор, кластерный отбор и стратифицированный отбор. Простой случайный отбор может осуществляться с помощью следующих методов: формирование выборки вслепую и с помощью таблицы случайных чисел12.
Обобщив разнообразные точки зрения, можно заключить, что во всех случаях типы выборки делятся на вероятностные (случайные) и невероятностные (неслучайные, целевые, целенаправленные). Ярких представителей каждого типа немного, например, случайная безвозвратная выборка явно принадлежит первому 95
типу, а квотная наилучшим образом характеризует достоинства и недостатки второго, невероятностного типа. Гораздо больше таких видов и методов выборки, которые можно отнести к смешанным. Их можно включить и в первый и во второй типы, а можно отнести лишь к одному из них. Ошибки не будет и в том случае, если придумать некий третий тип, назвать его, допустим, комбинационным и занести туда смешанные виды. Их особенность состоит в том, что вероятностные приемы отбора в них присутствуют частично — на одном из этапов, в нарушенном виде (смещенная выборка), в одном из элементов или приемов отбора. Их недостаток заключается в том, что репрезентативность получаемой информации находится под вопросом. Хотя это вовсе не означает, что смешанные типы выборки всегда нерепрезентативны. Они могут быть репрезентативными, а могут и не быть, поэтому объявлять такие типы выборки нерепрезентативными нельзя. В них сложно установить репрезентативность, используя классические статистические приемы. Но кто говорит, что в будущем наука не шагнет дальше, прибавив к традиционным какие-либо нетрадиционные способы определения репрезентативности данных? Описав кратко проблему типологии выборочных методов, перейдем к характеристике наиболее распространенных.
2.4. Методы вероятностной (случайной) выборки
Случайная (вероятностная) выборка — это выборка, для которой каждый элемент генеральной совокупности имеет определенную, заранее заданную вероятность быть отобранным. Это позволяет исследователю рассчитать, насколько правильно выборка отражает генеральную совокупность, из которой она выделена (спроектирована). Такую выборку иногда называют еще случайной.
Вероятностные методы включают:
♦ простой случайный отбор,
♦ систематический отбор,
♦ кластерный отбор,
♦ стратифицированный отбор.
Реализовать случайную выборку можно двумя приемами: лотерейным методом и с помощью таблицы случайных чисел. С помощью случайной выборки строится подавляющее большинство телефонных опросов и опросов на основе избирательных списков. Для построения такой выборки необходимо иметь полный список всех элементов генеральной совокупности.
2.4.1. Простой случайный отбор
Простой случайный отбор предполагает, что вероятность быть включенным в выборку известна и является одинаковой для всех единиц совокупности. Он реализуется двумя методами:
♦ отбор вслепую (другое название — метод лотереи или жребия),
♦ отбор не вслепую (происходит с помощью таблицы случайных чисел).
Итак, в одном случае вы осуществляете свой выбор не глядя, в другом — все осознавая, но для того, чтобы самому не вмешаться и ничего не испортить, обращаетесь к специальным таблицам.
Кроме того, простой случайный отбор подразделяется на две разновидности уже по другому критерию, а именно — возвращению или невозвращению лотерейного шара (вместо него может быть фамилия респондента) обратно в корзину. В этом случае выделяют:
♦ случайный повторный (с возвращением) отбор,
♦ случайный бесповторный (без возвращения) отбор.
В чем сходство и различие двух классификаций? В первом случае — вслепую/не вслепую — ученый мог смотреть на то, как осуществляется отбор, хотя никак не мог ему помешать (если отбор проводился вслепую), или выбор осуществляли не его руки, вынимающие из корзины шар, а таблица случайных чисел. Во втором случае — повторный/бесповторный — дело заключается не в исследователе (если отбор проводился не вслепую), а в лотерейном шаре: его либо возвращают для нового выбора, либо не возвращают и продолжают процесс без него.
Соединив оба членения простого случайного метода в декар-тову систему координат, получим четыре модальности (рис. 2.2).
Сразу оговоримся, что получившаяся схема не является в строгом смысле изображением логического квадрата, с помощью которого принято показывать отношения совместимости, эквивалентности, противоположности (контрарности), частичной совместимости (субконтрарности), подчинения и противоречивости суждений. В нашей схеме лишь некоторые квадраты дают новый тип случайного отбора или свидетельствуют о том, что данная комбинация действий осуществима. При использовании метода выборки вслепую единицы генеральной совокупности (фамилии, названия или просто номера из списка) можно вносить в карточки, а карточки в перемешанном виде поместить в какую-то непрозрачную емкость (ящик, коробку). Из этой емкости кто-то случайным образом вы-тягивает число карточек, определяемое объемом выборки. После каждого вытягивания и регистрации карточки ее можно возвра-97
щать, а можно не возвращать назад. В первом случае говорят о повторном, во втором — о бесповторном отборе. Их комбинация дает два квадрата, имеющих реальное содержание: можно вслепую выбирать из корзины шары и возвращать их для нового выбора, а можно их откладывать в сторону. Однако выборка не вслепую предполагает использование таблицы случайных чисел. Возвращать в нее выбранный номер невозможно, стало быть, образуемые вдоль этой оси квадраты не являются реальными.
Предлагаемая схема выполняет скорее мнемоническую функцию, помогая лучше запомнить материал. Можно также считать, что она имеет демонстративный смысл, но никак не логический. Она придумана для того, чтобы внести какую-то ясность в типологию разновидностей простого случайного отбора.
Вероятностную выборку целесообразно применять только при наличии соответствующих условий. Первое условие осуществления вероятностной выборки — наличие полного списка всех элементов генеральной совокупности (отсутствие или недоступность которого чаще всего и препятствует ее реализации) от 1 до N, где N— общее число всех элементов. Если же он имеется, то производится нумерация, после чего можно использовать вышеописанные методики. При использовании лотерейного метода (или метода жребия) жетоны с номерами всех элементов помещают в урну, тщательно перемешивают и извлекают последовательно п жетонов, где п — число элементов выборочной совокупности. Элементы генеральной совокупности, имеющие номера, оказавшиеся на извлеченных жетонах, будут составлять выборочную совокупность. Это довольно
рудоемкая и продолжительная (при больших размерах выборки) операция, к тому же достаточно трудоемкая, поскольку «для обеспечения равного шанса выбора требуется тщательное перемешивание жетонов»13 после каждой выемки очередного номера.
Второе условие вероятностной выборки —хорошая перемешан-ность элементов генеральной совокупности. Если выборка элементов производится из ящика, то его содержимое следует тщательно перемешать и уже после этого брать карточки случайным образом. Только при таких условиях все они имеют одинаковую вероятность попасть в выборку. Часто для образования случайной выборки элементы генеральной совокупности предварительно нумеруются, а каждый номер записывается на отдельной карточке. В результате получается пачка карточек, число которых совпадает с объемом генеральной совокупности. После тщательного перемешивания из этой пачки берут по одной карточке. Объект (респондент), имеющий одинаковый номер с карточкой, считается попавшим в выборку. При этом возможны два принципиально различных способа образования выборочной совокупности.
Первый— вынутая карточка после фиксации ее номера возвращается в пачку, после чего карточки снова тщательно перемешиваются. Повторяя такие выборки по одной карточке, можно образовать выборочную совокупность любого объема. Выборочная совокупность, образованная по такой схеме, получила название случайной возвратной выборки.
Второй— каждая вынутая карточка после ее записи обратно не возвращается. Повторяя по такой схеме выборки по одной карточ-ке, можно получить выборочную совокупность любого заданного объема. Выборочную совокупность, образованную по данной схе-ме называют случайной безвозвратной выборкой. Она возможна лишь в том случае, если из тщательно перемешанной пачки сразу берут нужное число карточек.
Заметим, что различие между случайными выборками с возвра-том и без возврата стирается, если они составляют незначитель-ную часть большой генеральной совокупности.
Однако при большом объеме генеральной совокупности этот метод оказывается очень трудоемким, и поэтому гораздо удобнее пользоваться таблицей случайных чисел. Она доказала свою эф-фективность при формировании равновероятностной выборки из больших совокупностей. Фрагмент такой таблицы случайных чи-сел приведен в табл. 2.1.
Фрагмент таблицы случайных чисел | Таблица | 2.1 | ||||||||
В таблицах случайных чисел все числа включены в таблицу случайным образом. Единицам совокупности присваивают порядковые номера. В таблице выбирают любую начальную точку и, двигаясь в произвольном направлении и произвольно меняя направление движения, выбирают необходимое количество номеров из числа присвоенных, равное заранее установленному объему выборки.
Если мы имеем, скажем, популяцию (т.е. генеральную совокупность) из 1507 элементов и хотим спроектировать выборку из 150, мы можем выбирать любые четыре смежных столбца в таблице случайных чисел. Каждый раз, когда будет появляться число от 0001 до 1507, мы будем считать, что оно обозначает номер отбираемого элемента. Если число появляется более чем один раз, этот номер игнорируется после первого раза. Если мы начнем с первых четырех столбцов в табл. 2.1, спускаясь по столбцам, то в выборку будут включены элементы под номерами 0799,1016,0084, 480 и 1306. Поскольку мы не стремимся умышленно отыскать определенное число, мы можем начать с любого места таблицы и использовать любую систему для движения по таблице.
Сегодня таблицу случайных чисел могут заменить машинные устройства, например компьютер, снабженный специальной программой. Их называют генераторами случайных чисел. При телефонном интервьюировании компьютер, имеющий генератор случайных чисел, может подавать на экран случайным образом отобранные телефонные номера.
2.4.2. Систематический отбор
Систематический отбор является вторым по научной значимости, но первым по популярности употребления видом простого случайного отбора. Его называют еще механическим отбором и считают упрощенным вариантом простого случайного отбора.
100
Примером служат разного рода квартирные выборки: выбираются улицы, на которых интервьюер проводит квартирный опрос. Квартиры выбираются по определенной схеме (крайняя квартира справа от лестницы на последнем этаже первого подъезда и т.д.).
Если под рукой таблицы случайных чисел нет, а генсовокупность относительно невелика14, то можно воспользоваться алфавитным списком, например, персонала предприятия (картотека всегда есть в отделе кадров) или избирательного участка (при опросе по месту жительства). Процедура систематического отбора проста: количество единиц генеральной совокупности, предположим 2000 работников предприятия, делится на количество анкет, скажем 200, и определяется шаг выборки. Он предполагает, что, начиная с любого номера из списка, опрашивается каждый десятый (2000:200 = 10). В формализованном виде данная процедура выглядит так. Из пронумерованного списка через равные интервалы £ отбирается заданное число респондентов. При этом шаг выборки к рассчитывается по простой формуле:
где N— численность генеральной совокупности, п — численность выборочной совокупности.
Таким образом, шаг выборки, а его еще называют «интервалом скачка» или просто «интервалом», — это математический показа-тель, рассчитанный как отношение объема генеральной совокуп-ности к объему выборки. Он показывает, сколько номеров в спис-ке фамилий людей, вошедших в генеральную совокупность, надо пропустить (через сколько перешагнуть), чтобы в итоге получить список выборочной совокупности. Буквально шаг выборки озна-я чает расстояние между соседними фамилиями респондентов, из меренное количеством отбракованных фамилий из списка гене-ральной совокупности (рис. 2.3).
Другой пример. Предположим, что нам нужно спроектировать выборку численностью 100 из списка 5000 студентов какого-то вуза. Если мы намерены использовать систематическую выборку, то должны вначале рассчитать интервал выборки делением числа элементов в списке на размер выборки. В данном случае, разделив 5000 имен на требуемый размер выборки 100 ед., мы получим интервал (шаг) выборки 50. Так что мы будем систематически двигаться по списку и отбирать каждого пятидесятого студента (отобрав таким образом 100 имен). Определение того места в списке, с которого мы начнем, проводится случайным образом, по таблице случайных чисел (это называется случайным стартом). Таким образом, если случайно выбрана точка старта под номером 31, то в выборку будут включены студенты, стоящие под номерами 31, 81, 131, 181 и т.д.
Итак, в основу систематической выборки положены не вероятностные процедуры, а алфавитные списки, картотеки, схемы, которые обеспечивают равновероятное попадание в выборку всех единиц генеральной совокупности.
Несмотря на свои преимущества, систематическая выборка может иногда иметь своим результатом предубежденную выборку. Такая ситуация возникает, например, когда элементы размещены в списке, ранжированном по каким-то характеристикам. В этой ситуации определение места начала случайного отбора будет влиять на средние характеристики всей выборки. Например, если студенты расставлены в списке в соответствии со средним оценочным баллом от высшего к низшему, систематическая выборка, включающая студентов, стоящих в списке под номерами 1,51,101, будет иметь более низкий средний балл, чем выборка, включаю-Щая студентов под номерами 50, 100 и 150. Каждая новая выборка будет давать другой средний балл, который представляет собой предубежденную картину студенческой популяции.