Углеводы представляют собой из классов органических веществ, которые очень широко распространены в природе, особенно в растительном мире.
Углеводы выполняют разносторонние функции:
1. Энергетическая функция – являются одним из основных источников энергии для организма, обеспечивая его примерно на 60% от общего количества.
2. Пластическая функция. Углеводы входят в состав оболочек субклеточных структур и мембран клеток, где они определяют межклеточные контакты, принимают участие в синтезе нуклеопротеидов, липидов, ферментов. Сложные и важные функции в организме выполняют смешанные полимеры, в состав которых также входят углеводы (гликопептиды, гликопротеины и т.д.)
3. Резервная функция – углеводы обладают способностью накапливаться в организме в виде гликогена, который расходуется по мере необходимости.
4. Защитная функция осуществляется, с одной стороны, гликозаминогликанами (мукополисахаридами), входящими в состав секретов слизистых желез, с другой стороны, углеводы входят в состав антител.
Кроме того, углеводы, имеют специальные назначения – они входят в состав факторов крови, определяющих его групповую принадлежность, а также веществ, тормозящих свертывание крови (гепарин), являются составными частями нуклеиновых кислот, участвуют в ионном обмене, в проведении нервных импульсов и др.
Ращепление углеводов (крахмала и гликогена) начинается в ротовой полости под действием?-амилазы слюны. Желудочный сок не содержит ферменты, расщепляющие углеводы.?-Амилаза поджелудочной железы расщепляет полисахариды в дисахариды, которые далее превращаются в моносахариды кишечными ферментами – инвертазой, мальтозой, лактозой и сахаразой. Перед всасыванием происходит фосфорилирование с участием ионов Na+, активизирующих АТФ-азу.
Нарушения всасывания углеводов
Могут возникать:
1. При поражении поджелудочной железы и слизистой кишечника;
2. Понижение эндокринной функции коры надпочечников, в результате чего наблюдается дефицит ионов Na+;
3. Отравлениях ферментами, ядами (монойодацетатом, флоридзином), блокирующих процессы фосфорилирования.
Большая част всосавшихся моносахаридов с током крови через воротную вену доставляется в печень, где глюкоза утилизируется для синтеза гликогена и триглицеридов (ТГ). Гликоген – резерв Гл в организме. Содержится практически во всех тканях, преимущественно в мышцах и печени.
Наледственные нарушения углеводно обмена обусловлены генетическими дефектами синтеза отдельных ферментов существенно важных путей метаболизма углеводов. Примерами могут служить галактоземия, фруктозурия, непереносимость лактозы и другие заболевания.
Промежуточный обмен углеводов – это превращения углеводов в тканях организма до конечных продуктов – СО 2 и Н 2 О.
Процес окисления г люкозы идет по 2 основным путям:
1. Анаэробный гликолиз иаэробный гликолиз.Распад глюкозы в анаэробных условиях и при непрямом превращении протекает почти одинаково до образования пировиноградной кислоты. В анаэробных условиях ПК восстанавливается в молочную кислоту (МК), которая в печени участвует в образовании гликогена или рециркулирует через цикл Кори в глюкозу.
2. В аэробных условиях ПК при участии пируватдегидрогеназного комплекса и 5-ти коферментов (тиаминдифосфата, рибофлавина, пантотеновой и липоевой кислот, никотинамида) окисляется до ацетил-КоА, который затем подвергается дальнейшим превращениям в цикле Кребса, конечными продуктами которого являются СО 2, Н 2 О и 38 молекул АТФ.
Нарушения промежуточного обмена углеводов возникают при:
1. нарушениях функций поджелудочной железы;
2. поражениях печени;
3. недостатке коферментов (особенно вит. В 1). В результате чего в организме накапливаются пируват и лактат, нарушается цикл Кребса;
4. нарушения аэробного пути обмена (при различных гипоксических состояниях). В крови повышается уровень МК. Развивается ацидоз и, как следствие, снижается выработка АТФ.
Главными продуктом расщепления углеводов у взрослых в жкт является глюкоза, которая в нормальных условиях жизнедеятельности организма является основным энергетическим субстратом, особенно для клеток головного мозга. В норме содержание Гл в плазме крови составляет 3,3 – 5,5 ммоль/л.
Понижение содержания глюкозы в крови – гипогликемиия может являться симптомом различных болезней и патологических состояний, причем особенно уязвимым является головной мозг. Различают гипогликемии печеночного типа: физиологические гипогликемии новорожденных, при отравлениях, инфекциях, повреждениях паренхимы печени, сдавливании печеночных вен; при голоде и недоедании; при уменьшении выделения СТГ, адреналина, глюкокортикоидов и др. гормонов; гипогликемии при усиленном распаде Гл в тканях и при усиленном выведении Гл (нарушение резорбции Гл в почках); при избыточном введении инсулина у больных сахарным диабетом и др.
Повышение содержания глюкозы в крови – гипергликемия. Виды гипергликемий см. учебник «Патологическая физиология».
Инсулин – единственный гормон, способствующий снижению уровня сахара в крови. Инсулин относится к полипептидным гормонам, биосинтез которого происходит в?-клетках поджелудочной железы. Главным стимулятором синтеза и секреции инсулина является глюкоза. Кроме глюкозы стимуляторами секреции инсулина являются кишечные гормоны, СТГ, пролактин, глюкагон, АКТГ, ряд аминокислот и жирных кислот, гормоны щитовидной, паращитовидных и половых желез, повышенная активность блуждающего нерва, опиоидные пептиды.
Ингибиторами секреции инсулина являются соматостатин, адреналин, норадреналин, голодание, гпоксия, гипотермия, ваготомия.
Биосинтез инсулина происходит в соответствии с информацией, закодированной в гене 11 хромосмы.
Часть поступившего в сосудистое русло инсулина остается в свободном виде, другая часть образует комплексы с белками крови. Молекулы инсулина осуществляют свое действие на внутриклеточные биохимические процессы посредством рецепторов.
К абсолютно зависимым от инсулина тканям относятся миокард, скелетные мышцы, жировая ткань, печень и островковый аппарат поджелудочной железы.
К числу инсулиннезависимых – почки, головной мозг, нейролеммоциты, эпителий хрусталика, артерии и сетчатая оболочка глаза. В инсулиннезависимые ткани Гл поступает путем пассивного переноса или облегченной диффузии.
Инсулин является универсальным анаболическим гормоном, оказывающим влияние на все виды обмена веществ. Инсулин влияет на проникновение Гл, аминокислот и электролитов в клетки. В самих клетках – усиливает фосфорилирование Гл, превращая ее в Гл-6-фросфат, и участвует в дальнейших превращениях Гл, идущих разными путями.
Стимулируя гликолиз, инсулин угнетает синтез ферментов глюконеогенеза.Инсулин усиливает гликогенез за счет активации гликогенсинтетазы и тормозит гликогенолиз.В мышечной ткани он активирует синтез белка и тормозит его расщепление. Инсулин стимулирует синтез жирных кислот в печени и жировой ткани (липогенез) и тормозит липолиз.
Суточная потребность в инсулине – 40 ед., а его содержание в поджелудочной железе здорового человека составляет 150-250 ед. Основное количество инсулина инактивируется в печени и почках под влиянием инсулиназы.
Контринсулярные гормоны – это гормоны, повышающие уровень сахара в крови.
Глюкагон. Синтезируется в α-клетках поджелудочной железы. Механизм действия глюкагона связан с усилением гликогенолиза в печени, в результате чего повышается концентрация глюкозы в крови.
Глюкокортикоиды стимулируют глюконеогенез.
СТГ и пролактин оказывают прямое стимулирующее влияние на островки Лангерганса. Большие их дозы и продолжительное время воздействие истощают?-клетки, приводя к развитию гипергликемии.
Гормоны щитовидной железы усиливают гликогенолиз и повышают всасывание глюкозы в кишечнике.
Адреналин и норадреналин стимулируют гликогенолиз в печени и мышцах, глюконеогенез, липолиз и протеолиз. Они ингибируют гексокиназу в печени, а, следовательно, утилизацию глюкозы.
Таким образом, инсулин и контринсулярные гормоны играют важную роль в регуляции углеводного обмена, который очень тесно связан с другими видами обменных процессов.