Химические реакторы
Классификация химических реакторов и режимов их работы
Химические реакторы для проведения различных процессов отличаются друг от друга по конструктивным особенностям, размеру, внешнему виду. Однако, несмотря на существующие различия, можно выделить общие признаки классификации реакторов, облегчающие систематизацию сведений о них, составление математического описания и выбор метода расчета.
Наиболее употребимы следующие признаки классификации химических реакторов и режимов их работы: 1) режим движения реакционной среды (гидродинамическая обстановка в реакторе); 2) условия теплообмена в реакторе; 3) фазовый состав реакционной смеси; 4) способ организации процесса; 5) характер изменения параметров процесса во времени; 6) конструктивные характеристики.
Классификация реакторов по гидродинамической обстановке. В зависимости от гидродинамической обстановки можно разделить все реакторы на реакторы смешения и вытеснения.
Реакторы смешения — это емкостные аппараты с перемешиванием механической мешалкой или циркуляционным насосом. Реакторы вытеснения — трубчатые аппараты, имеющие вид удлиненного канала. В трубчатых реакторах перемешивание имеет локальный характер и вызывается неравномерностью распределения скорости потока и ее флуктуациями, а также завихрениями.
В теории химических реакторов обычно сначала рассматривают два идеальных аппарата: реактор идеального, или полного, смешения и реактор идеального, или полного, вытеснения.
Классификация по условиям теплообмена. Протекающие в реакторах химические реакции сопровождаются тепловыми эффектами (это тепловые эффекты химических реакций и сопровождающих их физических явлений, таких, например, как процессы растворения, кристаллизации, испарения и т. п.). Вследствие выделения или поглощения теплоты изменяется температура и возникает разность температур между реактором и окружающей средой, а в определенных случаях температурный градиент внутри реактора.
При отсутствии теплообмена с окружающей средой химический реактор является адиабатическим. В нем вся теплота, выделяющаяся или поглощающаяся в результате химических процессов, расходуется на «внутренний» теплообмен — на нагрев или охлаждение реакционной смеси.
Реактор называется изотермическим, если вследствие теплообмена с окружающей средой в нем обеспечивается постоянство температуры. В этом случае в любой точке реактора в результате теплообмена полностью компенсируется выделение или поглощение теплоты.
В реакторах с промежуточным тепловым режимом тепловой эффект химической реакции частично компенсируется теплообменом с окружающей средой, а частично вызывает изменение температуры реакционной смеси.
Классификация по фазовому составу реакционной смеси. Реакторы для проведения гомогенных процессов подразделяют на аппараты для газофазных и жидкофазных реакций. Аппараты для проведения гетерогенных процессов, в свою очередь, подразделяют на газожидкостные реакторы, реакторы для процессов в системах газ — твердое вещество, жидкость — твердое вещество и др. Особо следует выделить реакторы для проведения гетерогенно-каталитических процессов.
Классификация по способу организации процесса. По способу организации процесса (способу подвода реагентов и отвода продуктов) реакторы подразделяют на периодические, непрерывно-действующие и полунепрерывные (полупериодические).
В реакторе периодического действия все отдельные стадии протекают последовательно, в разное время. Все реагенты вводят в аппарат до начала реакции, а смесь продуктов отводят по окончании процесса. Продолжительность реакции можно измерить непосредственно, так как время реакции и время пребывания реагентов в реакционном объеме одинаковы. Параметры технологического процесса в периодически действующем реакторе изменяются во времени.
Между отдельными реакционными циклами в периодическом реакторе необходимо выполнить вспомогательные операции — загрузку реагентов и выгрузку продуктов. Поскольку во время этих вспомогательных операций не может быть получено дополнительное количество продукта, их наличие обусловливает снижение производительности периодического реактора.
В реакторе непрерывного действия (проточном) все отдельные стадии процесса химического превращения вещества (подача реагирующих веществ, химическая реакция, вывод готового продукта) осуществляются параллельно, одновременно и, следовательно, непроизводительные затраты времени на операции загрузки и выгрузки отсутствуют. Поэтому на современных крупнотоннажных химических предприятиях, где требуется высокая производительность реакционного оборудования, большинство химических реакций осуществляют в непрерывнодействующих реакторах.
В реакторе полунепрерывного (полупериодического) действия один из реагентов поступает в него непрерывно, а другой — периодически. Возможны варианты, когда реагенты поступают в реактор периодически, а продукты реакции выводятся непрерывно, или наоборот.
Классификация по характеру изменения параметров процесса во времени. В зависимости от характера изменения параметров процесса во времени одни и те же реакторы могут работать в стационарном и нестационарном режимах.
Рассмотрим некоторую произвольную точку, находящуюся внутри химического реактора. Режим работы реактора называют стационарным, если протекание химической реакции в произвольно выбранной точке характеризуется одинаковыми значениями концентраций реагентов или продуктов, температуры, скорости и других параметров процесса в любой момент времени. В стационарном режиме параметры потока на выходе из реактора не зависят от времени. Обычно это постоянство выходных параметров обеспечивается постоянством во времени параметров на входе в реактор.
Если в произвольно выбранной точке происходят изменения параметров химического процесса во времени по тому или иному закону, режим работы реактора называют нестационарным. Нестационарный режим является более общим. Стационарный режим возможен для непрерывнодействующих проточных реакторов. Но даже эти реакторы работают в нестационарном режиме в моменты их пуска и остановки. Нестационарными являются все периодические процессы.
Классификация по конструктивным характеристикам. Химические реакторы отличаются друг от друга и по ряду конструктивных характеристик, оказывающих влияние на расчет и изготовление аппаратов. По этому принципу классификации можно выделить такие типы реакторов: емкостные реакторы (автоклавы; реакторы-камеры; вертикальные и горизонтальные цилиндрические конверторы и т. п.); колонные реакторы (реакторы-колонны насадочного и тарельчатого типа; каталитические реакторы с неподвижным, движущимся и псевдоожиженным слоем катализатора; полочные реакторы); реакторы-теплообменники; реакторы типа реакционной печи (шахтные, полочные, камерные, вращающиеся печи) и т. д.
ХИМИЧЕСКИЕ РЕАКТОРЫ С ИДЕАЛЬНОЙ СТРУКТУРОЙ ПОТОКА В ИЗОТЕРМИЧЕСКОМ РЕЖИМЕ
Реактор идеального смешения
Для модели идеального смешения принимается ряд допущений. Допускается, что в результате интенсивного перемешивания устанавливаются абсолютно одинаковые условия в любой точке реактора: концентрации реагентов и продуктов, степени превращения реагентов, температура, скорость химической реакции и т. д. Например, в некоторый момент времени τ, во всех точках ректора выполняются следующие условия:
; ; ,
где x, y, z – пространственные координаты.
В проточном реакторе идеального смешения концентрации участников реакции в выходном потоке в рассматриваемый момент времени т, строго равны концентрациям тех же веществ в реакторе.
Чтобы перечисленные допущения могли быть выполнены, необходимо принять еще одно допущение: переход от одной концентрации к другой в реакторе идеального смешения не должен иметь протяженности во времени. Изменение концентрации исходного реагента от начальной СJ,0 во входном потоке в данный момент времени х, до концентрации в реакторе СJ, в этот же момент времени должно происходить мгновенно (скачкообразно).
Схемы реакторов идеального смешения с механическим перемешивающим устройством (а) и циркуляционным контуром (б)
Приблизиться к режиму идеального смешения можно, обеспечив интенсивное перемешивание реакционной смеси механическими мешалками разного типа или циркуляционными насосами, создающими высокую кратность циркуляции. Смешение, близкое к идеальному, легче выполнить в емкостных аппаратах с приблизительно равными диаметром и высотой.
Рассмотрим два частных случая: периодический реактор идеального смешения и проточный реактор идеального смешения, работающий в стационарном режиме.
Периодический реактор идеального смешения. В периодический реактор все реагенты вводят до начала реакции, а все продукты выводят из него только по окончании процесса. В ходе реакционного цикла никаких веществ в реактор не вводят и из него не выводят, так что общая масса реакционной смеси в реакторе остается постоянной, изменяется лишь ее состав.
Время пребывания реагентов в реакторе (продолжительность реакционного цикла) определяется промежутком от начала загрузки исходной реакционной смеси до выгрузки конечной смеси из реактора. В разные моменты времени условия в периодическом реакторе различные (концентрация реагентов, продуктов, скорость реакции и т. д.), однако в каждый данный момент времени из-за допущения об идеальности эти параметры строго одинаковы в объеме реактора.
Для осуществления процесса в периодическом реакторе кроме «реакционного» времени нужно затратить вспомогательное время на загрузку реагентов, выведение реактора на нужный технологический режим, разгрузку и очистку. Полное время одного цикла работы периодического реактора суммируется, таким образом, из основного τхр и вспомогательного τвсп:
τ = τхр + τвсп.
Наличие τвсп как составной части времени цикла приводит к снижению производительности химического реактора (количество продукта, получаемого в единицу времени) и является одним из существенных недостатков периодических процессов вообще. Другие их недостатки — большие затраты ручного труда, сложность решения задач автоматизации (так как условия в реакторе во времени постоянно меняются).
Однако периодические реакторы обычно можно приспособить к широкому диапазону условий реакций, что удобно при необходимости производить на одной установке различные химические продукты, например, в промышленности химических реактивов. Периодические реакторы с интенсивным перемешиванием, приближающимся к идеальному смешению, применяют в производствах реактивов, органических красителей, лекарственных препаратов — там, где для достижения достаточной глубины превращения требуется сравнительно длительное время, а объемы производства невелики.
Периодические реакторы смешения часто применяют в микробиологической промышленности для культивирования аэробных микроорганизмов. Процесс культивирования для большинства микроорганизмов длится 48—72 ч, т. е. достаточно длителен. Интенсивное перемешивание в ферментаторе позволяет обеспечить равномерное распределение температуры, что особенно важно в таких процессах, так как даже небольшие локальные разогревы могут привести к гибели микроорганизмов. Изолированность реакционной системы в периодическом реакторе позволяет устранить опасность отравления микроорганизмов случайными примесями, которые могут попасть в аппарат при непрерывной подаче реагентов.
Окончательное решение о целесообразности применения периодического или непрерывного процесса можно вынести лишь на основании экономической оценки (сравнения расходов на эксплуатацию, амортизацию, электроэнергию, пар, сырье и т. д.). Как правило, при проведении такого сравнения оказывается, что периодические процессы выгодны при относительно невысокой производственной мощности в тех случаях, когда получают дорогостоящие продукты.
Проточный реактор идеального смешения в стационарном режиме. Если необходимо обеспечить получение большого количества продукта одинакового качества, химический процесс предпочитают проводить в непрерывнодействующих реакторах с установившимся режимом. Распространенным видом таких проточных аппаратов являются реакторы смешения. Проточный реактор смешения может работать как в нестационарном режиме (пуск, выход на режим, остановка), так и в стационарном, установившемся режиме.
В качестве элементарного объема для реактора идеального смешения можно принять полный объем реактора V. При стационарном режиме работы реактора не происходит изменения постоянных по объему концентраций участников реакции и во времени, следовательно, в качестве элементарного промежутка времени можно принять любой конечный временной интервал, например единицу времени (1 с, 1 мин или 1 ч).
Стационарность процесса в проточном реакторе можно обеспечить, если объемные расходы на входе v0 и выходе vf равны между собой (v0 = vf = v).
Величина измеряется в единицах времени и характеризует среднее время, в течение которого обновляется содержимое проточного реактора. Эту величину называют средним временем пребывания реагентов в проточном реакторе.
Действительное время пребывания частиц в проточном реакторе смешения является случайной величиной в отличие от времени пребывания реагентов в периодическом реакторе. Пусть, например, в реактор введено N одинаковых частиц. В периодическом реакторе все они будут находиться равное время от загрузки до выгрузки. В проточном реакторе идеального смешения эти частицы мгновенно и равномерно распределяются по всему объему аппарата, и так как из аппарата непрерывно выходит поток продуктов, то в момент ввода частиц в реактор какое-то их количество может сразу же оказаться в выходном потоке. Некоторые частицы, равномерно распределяясь в новых порциях реакционной смеси, вошедшей в аппарат, могут находиться в нем бесконечно долго. Отсюда можно сделать вывод, что действительное время пребывания частиц в проточном реакторе — это случайная величина, которая может изменяться от 0 до ∞. Непрерывную случайную величину можно задать с помощью вероятностных характеристик, в частности функций распределения случайной величины. Использование в качестве характеристики времени пребывания частиц в проточном реакторе величины является удобным способом усреднения действительного времени пребывания, так как эта величина связана с конструктивными характеристиками реактора: его объемом и объемным расходом реакционной смеси.
Реактор идеального вытеснения
Реактор идеального вытеснения представляет собой длинный канал, через который реакционная смесь движется в поршневом режиме. Каждый элемент потока, условно выделенный двумя плоскостями, перпендикулярными оси канала, движется через него как твердый поршень, вытесняя предыдущие элементы потока и не перемешиваясь ни с предыдущими, ни со следующими за ним элементами.
Схема реактора идеального вытеснения
Естественно, что при проведении химической реакции, например реакции, в которой участвуют два или более реагентов, перемешивание участников реакции является необходимым условием ее осуществления, иначе невозможным будет контакт между разноименными молекулами, в результате которого и происходит элементарный акт реакции. Если в реакторе идеального смешения перемешивание носит глобальный характер и благодаря ему параметры процесса полностью выравниваются по объему аппарата, в реакторе идеального вытеснения перемешивание является локальным: оно происходит в каждом элементе потока, а между соседними по оси реактора элементами, как уже указывалось, перемешивания нет.
Идеальное вытеснение возможно при выполнении следующих допущений: 1) движущийся поток имеет плоский профиль линейных скоростей; 2) отсутствует обусловленное любыми причинами перемешивание в направлении оси потока; 3) в каждом отдельно взятом сечении, перпендикулярном оси потока, параметры процесса (концентрации, температуры и т. д.) полностью выравнены.
Следует отметить, что строго эти допущения в реальных реакторах не выполняются. Из гидравлики известно, что даже в очень гладких каналах при движении потока, характеризующегося высокими числами Рейнольдса Re, у стенок канала существует так называемый пограничный вязкий подслой, в котором градиент линейной скорости очень велик. Сравнивая профили скоростей при различных потоках видно, что максимально приблизиться к идеальному вытеснению можно лишь в развитом турбулентном режиме.
Профили линейных скоростей потока при ламинарном (а), развитом турбулентном (б) и идеальном поршневом (в) режимах течения жидкости
Однако турбулентный поток характеризуется наличием нерегулярных пульсаций, носящих хаотичный характер, в результате чего некоторые частицы потока могут опережать основной поток или отставать от него, т. е. произойдет частичное перемешивание в осевом направлении. Конечно, абсолютные значения таких перемещений будут невелики по сравнению с основным осевым перемещением потока и при больших линейных скоростях ими можно пренебречь. В то же время турбулентные пульсации в радиальном направлении будут способствовать локальному перемешиванию реагентов и выполнению третьего допущения.
В реальном реакторе можно приблизиться к режиму идеального вытеснения, если реакционный поток — турбулентный и при этом длина канала существенно превышает его поперечный размер (например, для цилиндрических труб L/d > 20).
Среднее время пребывания для реактора идеального вытеснения в силу первого допущения о плоском профиле линейных скоростей действительное время пребывания всех частиц потока в аппарате будет одинаковым и, следовательно, является удобной характеристикой, пропорциональной объему реактора.
Сравнивая эффективности работы проточных реакторов идеального смешения и идеального вытеснения можно видеть, что при одинаковых условиях проведения одной и той же реакции для достижения равной глубины превращения среднее время пребывания реагентов в проточном реакторе идеального смешения должно быть больше, чем в реакторе идеального вытеснения. Этот факт легко может быть объяснен характером распределения концентрации реагентов по объему указанных реакторов. Если в проточном реакторе идеального смешения концентрации во всех точках равны конечной концентрации, то в реакторе идеального вытеснения в двух соседних точках на оси реактора концентрации реагентов уже отличаются. Скорость реакции, согласно закону действующих масс, пропорциональна концентрации реагентов. Следовательно, в реакторе идеального вытеснения она всегда выше, чем в проточном реакторе идеального смешения. А при большей скорости протекания реакции для достижения той же глубины превращения требуется меньшее время пребывания реагентов в реакторе.
Следовательно, при равном объемном расходе для достижения одинаковых результатов реактор идеального вытеснения должен иметь меньший объем, чем проточный реактор идеального смешения.
При сравнении не учитывался ряд факторов, ограничивающих применение аппаратов, работающих в режиме, близком к идеальному вытеснению. К ним следует отнести, например, большое гидравлическое сопротивление трубчатых реакторов, трудность чистки таких аппаратов и т. д. Конструктивно проточные аппараты с интенсивным перемешиванием проще, но обладают тем характерным недостатком, что в них устанавливается низкая концентрация исходного реагента (равная конечной) и, следовательно, низкой будет скорость химической реакции. Для использования преимуществ реакторов смешения и в то же время поддержания в реакционной системе более высоких концентраций реагентов можно создать каскад реакторов идеального смешения последовательным включением нескольких реакторов.