Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Регуляция экспрессии генов у прокариот




А)Регуляция содержания РНК в процессе биосинтеза

Образование РНК у прокариот чаще всего регу­лируется на уровне инициации транскрипции не­сколькими способами. Первый заключается в модификации структуры РНК-полимеразы. Так, бета-(или бета-прим) субъед. РНК-полимеразы Е. coli изменяется при заражении клеток некоторыми бактериофагами. Другой пример- образование но­вой, сигма-субъед. при споруляции определен­ных штаммов Bacillus. И в том и другом случае изменяются способность РНК-полимеразы к свя­зыванию с промотором и скорость транскрипции соотв-щих генов. Второй способ - изменение пространственной струк­туры ДНК, что влияет на способность РНК-полимераз связываться с определенными промотора­ми и инициировать синтез РНК. И наконец, взаимо­действие РНК-полимеразы с некоторыми промото­рами может ингибироваться или стимулироваться белками, которые связываются с ДНК в месте присоединения полимеразы или вблизи него. На связывание таких регуляторных белков - репрессоров и активаторов - часто влияют определенные метабо­литы, играющие роль корепрессоров и коактиваторов.

Скорость элонгации РНК зависит также от вто­ричной структуры мРНК. Сигналы, которые опре­деляют, дойдет ли транскрипция до конца или закончится преждевременно, играют ключ.роль в рег-ции уровня мРНК. В подобных слу­чаях за прекращ-е или продолж-е транскрип­ции отвечают определ.нуклеотидные после­дов-ти и белки.

В)Согласованная регуляция экспрессии генов

Согласованная регуляция групп родственных ге­нов. У Е. coli гены, кодирующие белки одного и того же метаболического пути или определяющие близ­кородственные функции, часто рег-ся согла­с-но. Это значит, что их экспрессия нач-ся и заканч-ся или согласованно продолжается в ответ на один и тот же регуляторный сигнал. Гены, подчиняющиеся согласованной регуляции, в геноме часто бывают сцеплены и транскриби­руются с промотора, находящегося на 5'-конце та­кой группы генов (кластера), в виде единственной молекулы РНК, называемой полицистронным (или полигенным) транскриптом. Группа координиро­ванно экспрессирующихся генов называется опероном. Три гена, кодирующие ферменты, ответствен­ные за метаболизм галактозы у Е. coli, организо­ваны в оперон с промотором (Р) и примыкающим к нему регуляторным сегментом-оператором (О) на 5'-конце транскрибируемой последовательности: galE-galT-galK. Ген gal R, кодирующий репрессор gal -оперона, не сцеплен с опероном.

Гены, кодирующие несколько родственных функ­ций, не всегда образуют единый оперон. Так, гены, кодирующие 30S- и 50S-рибосомные белки, орга­низованы во множественные опероны, в чей состав иногда входят гены, кодирующие другие белки, которые участвуют в транскрипции и/или трансля­ции

Позитивная и негативная регуляция. Негативная регуляция инициации транскрипции, или репрессия, осуществляется белками-репрессорами, которые связываются с операторами. Поскольку последо­вательности оператора и промотора часто перекры­ваются, связывание репрессоров со своими опера­торами ограничивает доступ РНК-полимеразы к промотору, подавляя тем самым инициацию транскрипции. Позитивная регуляция может осущ-ся путем связывания специфических бел­ков с нуклеотидными последовательностями, расположенными в области промотора. Считается, что связанный активаторный белок способствует ассоциации РНК-полимеразы с промотором и, сле­довательно, увеличивает вероятность инициации транскрипции.

Гены, кодирующие регуляторные белки, которые связываются с операторными или активаторными последовательностями, могут находиться как вбли­зи контролируемых ими генов, так и далеко от них. Например, ген, кодирующий репрессор галактозного оперона (galR), не сцеплен с транскрипционной единицей, состоящей из генов galE, galT и gal К. Напротив, позитивная или негативная регуляция транскрипции арабинозного оперона за­висит от того, образуется или нет комплекс между арабинозой и белком, кодируемым только сцеп­ленным с опероном геном ara C.

В) Регуляция экспрессии лактозного оперона

Негативная регуляция. Бактерии Е. coli могут использовать в кач-ве единств.источника углерода и энергии лактозу, поскольку они способ­ны образовывать в большом количестве b-галактозидазу - фермент, расщепляющий лактозу на глюко­зу и галактозу. Однако при росте на других источниках углерода в клетках Е. coli образуется очень мало b-галактозидазы. Ген, ответственный за синтез b-галактозидазы (lac Z), называется индуцибельным, поскольку кодируемый им фермент синтезируется только тогда, когда в клетке присутствуют сахара, имеющие b-галактозильные остатки. Помимо b-галактозидазы, b-галактозиды индуцируют образова­ние еще двух белков: b-галактозидпермеазы (коди­руемой геном lac Y), необходимой для проникнове­ния b-галактозидов в клетку, и b-галактозидтрансацетилазы (1ас А), фермента с невыясненной пока функцией. В этих трех генах- lac Z, lacY и lac А - содержится вся информация о белках, коди­руемых lac -опероном. Они транскрибируются в еди­ную полицистронную РНК, при трансляции кото­рой образуются почти одинаковые количества соот­ветствующих белков.

Со структурными генами lac -оперона связаны несколько типов регуляторных элементов,. Промотор -это нуклеотидная последовательность, с которой свя­зывается РНК-полимераза и начинается транскрип­ция трех структурных генов. Оператор -это сайт, с которым связывается lac -репрессор, подавляющий транскрипцию lac -оперона. Ген lac I, не входящий в состав lac -оперона, кодирует репрессор-полипептидную цепь с мол. массой 37000 Да. Репрессор прочно связывается с оператором, находясь в тетрамерной форме.

Поскольку промоторная и операторная после­довательности перекрываются, связывание репрессора с оператором мешает связыванию РНК-полимеразы с промотором, что приводит к блокир-ю транскрипции структурных генов. Транс­крипцию оперона можно индуцировать, если бло­кировать связывание репрессора с оператором. Такое блокирование происходит при свя­зывании одного из b-галактозидов с той или иной субъединицей репрессора, что уменьшает сродство последнего к оператору. После отсоединения реп­рессора от промотора полимераза может связаться с промотором и инициировать транскрипцию опе­рона.

Очень важно сохранение нуклеотидной после­довательности домена lac -оператора, связывающего репрессор. Мутации, уменьшающие сродство репрессора к оператору, приводили к конститутивному синтезу ферментов, кодируемых lac -опероном, т. е. к экспрессии lac -ферментов в отсутствие индуктора. Мутации, сопро­вождающиеся накоплением репрессора в клетках или увеличением сродства репрессора к оператору, делали lac -оперон неиндуцибельным.

Позитивная регуляци я. Для экспрессии lac -оперона, как и других индуцибельных оперонов,, необходимо не только снять репрессию оперона, но и получить некий сигнал. Таким сигналом служит комплекс циклического AMP (cAMP) с белком-активатором катаболизма (САР-catabolite activator protein), который связывается со специфической послед-тью, находящейся в самом начале lac -промотора. сАМР, образуется из АТР в ответ на самые разные вне-и внутрикл.события. САР представляет со­бой димер из идентичных полипептидных цепей с мол. массой 22 кДа. Связывание комплекса САР-сАМР со специфической последовательностью в начале промотора приводит к усилению транс­крипции lac -оперона почти в 50 раз. Сам по себе САР не способен к такому связыванию и стимуля­ции транскрипции. Усиление транскрипции с помощью комплекса САР-сАМР можно объяснить тем, что, связываясь с ДНК в непосредственной близости от сайта присоединения РНК-полимеразы, он усилива­ет сродство этого фермента к промотору. Альтернативная гипотеза заключается в том, что связывание САР-сАМР cСАР-сайтом предотвра­щает присоединение РНК-полимеразы к располо­женному поблизости слабому промотору и увели­чивает тем самым вероятность того, что полимераза свяжется с «правильным» промоторным сайтом.

Г). Временная регуляция генной экспрессии в жизненном цикле бактериофага l.

У бактериофага l есть два альтернативных способа существования. При литическом пути все вирусн.гены экспрессируются в определ.вре­менной послед-ти, в рез-те чего обра­з.примерно сотня фаговых частиц и происхо­дит лизис инфицированной бактерии. Интегрированная форма вирусн.генома называется профагом. В лизогенных клетках профаговая ДНК многократно реплицируется при помощи клеточн.ап-та так, как будто она является частью клеточного генома. При этом, од­нако, все фаговые гены, кроме одного, выключены.

Литический путь. Гены, кодирующие структурные белки (головки и хвосты), сконцентри­рованы в одной области ДНК; гены, кодирующие ферментативные (репликацию и рекомбинацию) и регуляторные (репрессию и антитерминацию) функции, сосредоточены в другой области генома.

После инфекции фаговая ДНК замыкается в кольцо путем соединения липких концов. Затем РНК-полимераза Е. coli транс­крибирует те фаговые мРНК, которые кодируют белки, необходимые на самых ранних этапах жиз­ненного цикла,- т.н.предранние мРНК. Одна из этих предранних мРНК транс­крибируется справа налево с промотора PL, а тер­минатором служит последовательность tL1. На этой мРНК (L1) синтезируется регуляторный белок N, работающий как антитерминатор. Другая предранняя мРНК транскрибируется слева направо с промотора PR к терминатору tR1и кодирует только белок Сrо.

По мере накопления белка N происходит аттенуация(ослабление;регуляция транскрипции с помощью сигнала терминации транскрипции, расположенного между промотором и началом первого структурного гена)терминации в tL1и tR1, РНК-полимераза продолжает транскрипцию через эти сайты с обра­зованием мРНК второго типа - задержанных ранних транскриптов. Более крупный транскрипт, начи­нающийся с промотора PL (L2), коди­рует ферменты, участвующие в рекомбинации, и ферменты, катализирующие встраивание ДНК фага l в ДНК клетки-хозяина. Задержанный ранний транскрипт, начинающийся с промотора PR (R2), кодирует фер­менты, ответственные за репликацию фаговой ДНК (белки О и Р), и еще один регуляторный белок Q. Белок Q вызывает аттенуацию терминации транс­крипции в терминаторном сайте ( tR3 ), расположен­ном сразу за промотором P R'. При транскрипции с промотора P R' транскрибируются гены (S и R), ответственные за включение лизиса клеток. К.т., поскольку ДНК фага l, сразу после инфекции замыкается в кольцо, S - иR-гены оказы­ваются рядом с генами, кодирующими белки голов­ки и хвоста фага. След-но, в рез-те транскрипции, инициир-ной в PR и продолжен­ной через tR3, образуется мРНК, кодирующая белки лизиса и все структурные вирусные белки. Итак, мы рассмотрели образование аппарата, необходимого для литич.инфекции: ферментов репликации вирусной ДНК и вирусных белков, участвующих в формировании зрелых фаговых частиц.

Лизогенный путь. Для того чтобы понять это, нужно усложнить схему строения про­моторов РL, и PR и ввести несколько дополни­тельных генов, генных продуктов и промоторов. На самом деле PL и PR являются частью сложной регуляторной области, в которой промоторы пе­ремежаются с операторными послед-тями OL и OR соответственно. OL и ОR -это сайты связывания двух регулягорных белков: репрессора сI и антирепрессора Сrо. Белок Cro-это продукт трансляции предранней мРНК, транскрибируемой вправо с промотора PR. Репрессор кодируется геном сI, локали­зованным между PR и PL /OL. сI-мРНК транскрибируется в направлении влево от промо­тора PRE, находящегося справа от Cro-гена. PRE сам активируется двумя «позитивными» регуляторными белками, cII и cIII, которые синтезируются после того, как благодаря действию белка N образуются транскрипты мРНК, инициированные в PR и PL, соответственно.

По мере накопления репрессора сI происходит его связывание с левым и правым операторными сайтами, в результате чего подавляется экспрессия всех генов, транскрибирующихся с PR и РL. В этом случае предпочтительным оказывается лизогенный путь, поскольку блокируется образование фермен­тов репликации и структурных вирусных белков, а небольшое количество интеграционного фермента Int, синтезированного с задержанной ранней мРНК, успевает катализировать рекомбинацию между фа­говой и бактериальной ДНК до момента полной репрессии фаговых генов.

Д)Трансляционная регуляция экспрессии некоторых генных продуктов

Синтез белков, составляющих собственно ап­парат трансляции, регулируется на уровне трансля­ции. Гены, кодирующие белки больших (L) и малых (S) субчастиц рибосомы и некоторых белков, участ­вующих в процессе трансляции (в том числе EF-Tu и EF-G), рассеяны по нескольким оперонам. Это позволяет координированно регу­лировать синтез тех генных продуктов, которые должны функционировать согласованно. Экспрессия таких генов как на уровне транскрипции, так и на уровне трансляции происходит координированно. Как мы увидим далее, синтез рибосомных белков частично регулируется также путем изменения со­держания трех рРНК и кинетических параметров процесса сборки рибосом.

Контроль трансляции некоторых оперонов ри­босомных белков осуществляется по одинаковому механизму. Один из рибосомных белков, кодируемый полицистронной мРНК, связывается со специфической последовательностью, локализованной либо на 5'-конце мРНК, либо в начале одной из кодирующих последовательностей в середине мРНК. В обоих случаях это блокирует доступ ри­босом к ближайшей инициаторной трансляционной последовательности. В зависимости от места нахож­дения сайта инициации трансляции мРНК-вблизи 5'-конца кодирующей последовательности или в од­ном из внутренних участков-блокируется трансля­ция всей мРНК или ее части. Контроль по типу обратной связи, при котором продукт регулирует экспрессию собственного гена, называется аутоген­ной регуляцией. Регуляция может осуществляться на уровне транскрипции (например, репрессорный бе­лок сI фага l, регулирует транскрипцию соответст­вующего гена с PRM ) ина уровне трансляции, как в приведенном примере.

При сборке рибосом некоторые из рибосомных белков связываются с рРНК. При наличии достаточного количества рРНК вновь синтезированные рибосомные белки ассоциируют с ней, чтобы инициировать сборку рибосом. При недостатке же рРНК накапливающиеся рибосомные белки связываются с собственной мРНК вместо рРНК и соответственно блокируют собственный синтез и синтез других родственных рибосомных белков. В рез-те предотвращается накопление свободных рибосомных белков. Т.о., некоторые ключевые рибосомные белки-это репрессоры, блокирующие трансляцию кодирую­щей их мРНК. Одновременно они блокируют синтез и других белков, кодируемых той же мРНК. Спо­собность рибосомных белков узнавать как рРНК, так и свою собственную мРНК связана с тем, что обе эти РНК обладают сходными нуклеотидными последовательностями. Так, последова­тельности, в которых рибосомные белки S8 и S7 связываются с 16S-PHK и своими собственными м РНК, имеют сходную вторичную структуру, причем петли имеют идентичные послед-ти.

 

Вопрос №74

Альтернативный сплайсинг – процесс, позволяющий индивидуальным генам продуцировать множество различных активных белковых изоформ.

Примеры альтернативного сплайсинга:

1) Кальцитонин и белок CGRP - различные пептиды, образующиеся в результате альтернативного сплайсинга одного гена. Кальцитонин образуется в клетках щитовидной железы и является пептидным гормоном, регулирующим уровень кальция в крови. Белок CGRP – синтезируется в нейронах и является сосудорасширяющим белком, участвующем в формировании вкусовых ощущений.

2) Один из ядерных генов риса продуцирует два совершенно неродственных белка – один является митохондриальным рибосомным белком S14, второй – В-субъединицей митохондриальной сукцинатдегидрогеназы.

 

Вопрос №75

РНК-интерференция (RNA silensing) – это подавление экспрессии генов у эукариот (замалчивание генов) на посттранскрипционном уровне, индуцированное короткими интерферирующими РНК (small interfering RNA, siРНК).

Появление в клетке dsРНК вызывает каскад событий, известный как РНК-интерференция.

1. Фермент Дайсер связывается с dsРНК и разрезает ей на короткие фрагменты в 21-23 п.н. – siРНК (short interfering RNA).

2. siРНК связываются с ферментативным комплексом RISC (RNA-induced silencing complex), который использует одну её нить (комплементарную мРНК) для связывания с мРНК.

3. Нуклеазная активность комплекса RISC деградирует мРНК.

Основные свойства РНК-интерференции:

• Специфичность (подавляется экспрессия только того гена, нуклеотидная последовательность которого полностью соответствует нуклеотидной последовательности вводимой dsРНК).

• РНК-интерференция реализуется на посттранскрипционном уровне (фрагменты dsРНК, соответствующие последовательностям промотора или интрона не вызывали РНК-интерференцию).

• Эффект РНК-интерференции, возникший в каком-либо участке тела С. elegans может распространяться по всему организму и передаваться по наследству потомкам.

 

76. Генетическая инженерия – использование методов молекулярной генетики и молекулярной биологии для конструирования in vitro рекомбинантных ДНК (или организмов) с заданными наследственными свойствами.





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 753 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2299 - | 2050 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.