Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Галогенопроизводные.Способы получения.Изомерия.Свойства




К галогенопроизводным углеводородов относят соединения, у которых один или несколько атомов водорода замещены на атомы галогенов.

Галогенопроизводные углеводородов классифицируют в зависимости от природы углеводородного радикала (алифатические, али-циклические и ароматические), количества атомов галогена в молекуле (моно-, ди-, три- и полигалогенопроизводные), характера галогена (фторо-, хлоро-, бромо-, йодопроизводные), характера атома углерода, с которым связаны атомы галогена (первичные, вторичные и третичные галогенопроизводные).

 

Галогенопроизводные углеводородов

с2н — С1

этил хлорид, хлористый этил

Н2С=СН—СН—Вг

аллилбромид, бромистый аллил

с6н — СН— С1

бензилхлорид, хлористый бензил

ные названия:

CHCL

хлороформ н2с=с—сн=сн2

С1

хлоропрен

 

галогенопроизводные получают замещением гидроксильной группы спиртов на галоген. Для этого используют галогеноводороды (HCl, HBr, HI), галогениды фосфора (PCl3, PCl5, PBr3, PBr5), тио-нилхлорид (SOCL).

Физические свойства. Низшие галогеналканы — газы или жидкости со своеобразным сладковатым запахом, средние — жидкости, высшие — твердые вещества. Большинство из них практически нерастворимы в воде, но легко растворяются в органических растворителях.

Химические свойства. Галогеналканы обладают высокой реакционной способностью; для них характерны реакции нуклеофиль-ного замещения SN, элиминирования (отщепления) Е. Они также вступают в реакции восстановления и взаимодействуют с некоторыми металлами.

Изомерия

Cтруктурная изомерия

Изомерия положения заместителей

1-бромбутан 2-бромбутан

Изомерия углеродного скелета

1-хлорбутан 2-метил-1-хлорпропан

Пространственная изомерия

Стереоизомерия может проявляться при наличии четырёх разных заместителей у одного атома углерода (энантиомерия) или при наличии разных заместителей при двойной связи, например:

транс-1,2-дихлорэтен цис-1,2-дихлорэтен

12.Алканы.Гомолитический ряд алканов.Номенклатура.Изомерия.Химические свойства.радикалы.Первичный,вторичный,третичный атомы углерода.Применение.Способы получения алканов.

Алка́ны (также насыщенные алифатические углеводороды, парафины) — ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2.

Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp3-гибридизации — все 4 гибридные орбитали атома С идентичны по форме и энергии, 4 связи направлены в вершины тетраэдра под углами 109°28'. Связи C—C представляют собой σ-связи, отличающиеся низкойполярностью и поляризуемостью. Длина связи C—C составляет 0,154 нм, длина связи C—H — 0,1087 нм.

Простейшим представителем класса является метан (CH4).

 

По номенклатуре ИЮПАК названия алканов образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающая группа или гетероатом, затем название группы или гетероатома и название главной цепи. Если группы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых групп указывают приставками ди-, три-, тетра-. Если группы неодинаковые, то их названия перечисляются в алфавитном порядке.[2]

Например:

2,6,6-триметил-3-этилгептан (слева направо) / 2,2,6-триметил-5-этилгептан (справа налево)

При сравнении положений заместителей в обеих комбинациях, предпочтение отдается той, в которой первая отличающаяся цифра является наименьшей. Таким образом, правильное название — 2,2,6-триметил-5-этилгептан.

Физические свойства

Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи

При нормальных условиях неразветвлённые алканы с CH4 до C4H10 — газы; с C5H12 до C13H28 — жидкости; начиная с C14H30 и далее — твёрдые вещества.

Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так, например, при 20 °C н -пентан — жидкость, а неопентан — газ.

Газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.

Химические свойства[править | править вики-текст]

Алканы имеют низкую химическую активность. Это объясняется тем, что единичные связи C—H и C—C относительно прочны, и их сложно разрушить. Поскольку углеродные связи неполярны, а связи С—Н малополярны, оба вида связей малополяризуемы и относятся к σ-виду, их разрыв наиболее вероятен по гомолитическому механизму, то есть с образованием радикалов.

Реакции радикального замещения[править | править вики-текст]

Галогенирование:
Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-излучением или нагреть.

Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от хлорметана до тетрахлорметана. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного, и в 2 раза меньше, чем вторичного. Таким образом, хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Стоит отметить, что галогенирование происходит тем легче, чем длиннее углеродная цепь н -алкана. В этом же направлении уменьшается энергия ионизации молекулы вещества, то есть, алкан легче становится донором электрона.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно — за один этап замещается не более одного атома водорода:

CH4 + Cl2 → CH3Cl (хлорметан) + HCl

CH3Cl + Cl2 → CH2Cl2 (дихлорметан) + HCl

CH2Cl2 + Cl2 → CHCl3 (трихлорметан) + HCl

CHCl3 + Cl2 → CCl4 (тетрахлорметан) + HCl.

Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, забирая у них атом водорода, в результате этого образуются метильные радикалы ·СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.

См. также: Цепная реакция

Бромирование алканов отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах.

Иодирование алканов иодом не происходит, получение иодидов прямым иодированием осуществить нельзя.

С фтором и хлором реакция может протекать со взрывом, в таких случаях галоген разбавляют азотом или подходящим растворителем.

Сульфохлорирование (реакция Рида):
При облучении УФ-излучением алканы реагируют со смесью SO2 и Cl2, После того, как с уходом хлороводорода образуется алкильный радикал, присоединяется диоксид серы. Образовавшийся сложный радикал стабилизируется захватом атома хлора с разрушением очередной молекулы последнего.

Инициирование цепного процесса:

Развитие цепного процесса:

Образовавшиеся сульфонилхлориды широко применяются в производстве ПАВ.

Нитрование:

Основная статья: Реакция Коновалова

Алканы реагируют с 10 % раствором азотной кислоты или оксидом азота NO2 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных.

RH + HNO3 → RNO2 + H2O.

Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов.

Реакции окисления:

Горение

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:

CH4 + 2O2 → CO2 + 2H2O + Q.

Значение Q достигает 46 000 — 50 000 кДж/кг.

В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).

В общем виде реакцию горения алканов можно записать следующим образом:

С n Н2 n +2 +(1,5 n +0,5)O2n CO2 + (n +1)H2O.

Каталитическое окисление

Могут образовываться спирты, альдегиды, карбоновые кислоты.

При мягком окислении СН4 в присутствии катализатора кислородом при 200 °C могут образоваться:

метанол: 2СН4 + О2 → 2СН3ОН;

формальдегид: СН4 + О2 → СН2О + Н2O;

муравьиная кислота: 2СН4 + 3О2 → 2НСООН + 2Н2O.

Окисление также может осуществляться воздухом. Процесс проводится в жидкой или газообразной фазе. В промышленности так получают высшие жирные спирты и соответствующие кислоты.

Ниже представлена реакция окисления алканов диметилдиоксираном:

Механизм реакций получения кислот путём каталитического окисления и расщепления алканов показан ниже на примере получения из бутана уксусной кислоты:

Термические превращения алканов:

Разложение

Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.

Примеры:

CH4 → C + 2H2 (t > 1000 °C).

C2H6 → 2C + 3H2.

Крекинг

При нагревании выше 500 °C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов.

В 1930—1950 гг. пиролиз высших алканов использовался в промышленности для получения сложной смеси алканов и алкенов, содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10—15 атомов углерода в углеродном скелете) и фракции солярового масла (12—20 атомов углерода). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания.

В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах — 400—450 °C и низком давлении — 10—15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой.

Для метана:

2CH4 → C2H2 + 3H2 — при 1500 °C.

Частичный крекинг:

CH4 → С + 2H2— при 1000 °C.

Дегидрирование

Образование:

1) В углеродном скелете 2 (этан) или 3 (пропан) атома углерода — получение (терминальных) алкенов, так как других в данном случае не может получиться; выделение водорода:

Условия протекания: 400—600 °C, катализаторы — Pt, Ni, Al2O3, Cr2O3.

а) CH3-CH3 → CH2=CH2 + H2 (этан → этен);

б) CH3-CH2-CH3 → CH2=CH-CH3 + H2 (пропан → пропен).

2) В углеродном скелете 4 (бутан, изобутан) или 5 (пентан, 2-метилбутан, неопентан) атомов углерода — получение алкадиенов; выделение водорода:

в) CH3-CH2-CH2-CH3 → CH2=CH-CH=CH2 + 2H2 (бутан → бутадиен-1,3 — дегидрирование удалённых связей С—С).

в') CH3-CH2-CH2-CH3 → CH2=C=CH-CH3 + 2H2 (бутан → бутадиен-1,2 — дегидрирование соседних связей С—С—С).

3) В углеродном скелете 6 (гексан) и более атомов углерода — получение бензола и его производных:

г) CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH3 (октан) → П.-ксилол, параллельно М.-ксилол, параллельно этилбензол + 4H2.

Конверсия метана

В присутствии никелевого катализатора протекает реакция:

CH4 + H2O → CO + 3H2.

Продукт этой реакции (смесь CO и H2) называется «синтез-газом».

 

Получение[править | править вики-текст]

Главным источником алканов (а также других углеводородов) являются нефть и природный газ, которые обычно встречаются совместно.

Восстановление галогенпроизводных алканов:
При каталитическом гидрировании в присутствии палладия галогеналканы превращаются в алканы[10]:

R—CH2Cl + H2 → R—CH3 + HCl

Восстановление иодалканов происходит при нагревании последних с иодоводородной кислотой:

R—CH2I + HI → R—CH3 + I2

Для восстановления галогеналканов пригодны также амальгама натрия, гидриды металлов, натрий в спирте, цинк в соляной кислоте или цинк в спирте[10]

Восстановление спиртов:
Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С. Так, например, проходит реакция восстановления бутанола(C4H9OH), проходящую в присутствии LiAlH4. При этом выделяется вода[11].

H3C—CH2—CH2—CH2OH → H3C—CH2—CH2—CH3 + H2O

Восстановление карбонильных соединений

Реакция Кижнера — Вольфа:

Реакцию проводят в избытке гидразина в высококипящем растворителе в присутствии KOH[12].

Реакция Клемменсена [13]:

Гидрирование непредельных углеводородов

Из алкенов

CnH2n + H2 → CnH2n+2

Из алкинов

CnH2n-2 + 2H2 → CnH2n+2

Катализатором реакции являются соединения никеля, платины или палладия[14].

Синтез Кольбе

При электролизе солей карбоновых кислот, анион кислоты — RCOO перемещается к аноду, и там, отдавая электрон превращается в неустойчивый радикал RCOO•, который сразу декарбоксилируется. Радикал R• стабилизируется путем сдваивания с подобным радикалом, и образуется R—R[15]. Например:

2CH3COO − 2e → 2[CH3COO•] → 2CH3• → C2H6

2C3H7COOK → {электролиз} → C6H14

Газификация твердого топлива (Процессы Бертло, Шрёдера, Бергиуса)

Проходит при повышенной температуре и давлении. Катализатор — Ni (для Бертло), Mo (для Шрёдера) или без катализатора (для Бергиуса):

C+2H2 → CH4

см. Газификация угля

Реакция Вюрца

2R—Br + 2Na = R—R + 2NaBr

Реакция идёт в ТГФ при температуре −80 °C[16]. При взаимодействии R и R` возможно образование смеси продуктов (R—R, R`—R`, R—R`)

Синтез Фишера — Тропша

nCO + (2n+1)H2 → CnH2n+2 + nH2O

 

Типы атомов углерода. В зависимости от строения цепи атомы углерода, входящие в ее состав, различают следующим образом: атом углерода, связанный в цепи только с одним атомом углерода, называют первичным, с двумя - вторичным, с тремя - третичным, с четырьмя – четвертичным. Пример:

Неразветвленная цепь содержит только первичные (концевые) и вторичные атомы углерода и называется нормальной (обозначается буквой " н -" перед названием соединения). Разветвленные цепи включают третичные и/или четвертичные атомы углерода.

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 3937 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2455 - | 2337 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.