Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Последовательность построения 2-х многогранников




 

Рис. 6

Рис. 6, а. Прежде чем приступить к построениям, анализируют взаимное положение мно­гогранников и их расположение относительно плоскостей про­екций. В данном случае очевидно, что многогранники могут пере­секаться только по боковым граням. Ребра призмы и боковые ребра пирамиды параллельны плоскости π2, основания пирамиды парал­лельны плоскости π1. Нижняя грань призмы и ее основания пер­пендикулярны плоскости π1.

Указанные особенности расположения призмы и пирамиды определяют и наиболее рациональный способ построения линии пересечения их поверхностей по точкам пересечения ребер призмы с гранями пирамиды и боковых ребер пирамиды с гранями призмы.

Построения показаны на рис. 6, б. Рассмотрим их для левой части чертежа (от оси пирамиды). Проекции 1", 1', 2", 2', 3", 3',4", 4' точек пересечения ребер призмы с гранями пирамиды найдены путем проведения через них фронтальных плоскостей β (β'), α (α'), γ (γ'). Они пересекают левые боковые грани пирамиды по фронталям - прямым линиям, параллельным левому ребру пирамиды. Положение их фронтальных проекций определено по горизонтальным проекциям 21', 22', и 24' точек пересечения горизонтальных проекций β', α' и γ' плоскостей β, α, γ с горизонтальной проекцией основания пирамиды. В пересечении фронтальных проекций этих линий с фронтальными проекциями ребер призмы найдены фронтальные проекции 1", 2" и 4" точек пересечения ребер призмы с левыми гранями пирамиды. По ним построены горизонтальные проекции 1', 2', 4'.

Проекции 3", 3' точки пересечения ребер AD пирамиды с верхней задней гранью призмы найдены с помощью вспомогатель­ной фронтальной плоскости η(η'), которая проведена через это ребро. Плоскость η пересекает грань призмы по прямой, параллель­ной ребрам призмы и проходящей через точку 23 на основании призмы. В пересечении фронтальных проекций этой прямой и ребра А" D" найдена фронтальная проекция 3" точки пересечения ука­занного ребра с задней верхней гранью призмы и на линии связи - горизонтальная проекция 3'. С нижней гранью призмы, пер­пендикулярной плоскости π2, ребро AD пересекается в точке с фронтальной проекцией 5 ". В проекционной связи на проекции А' D' построена ее горизонтальная проекция 5'.

 

 

Таким образом, проекции точек пересечения всех ребер призмы с левыми гранями пирамиды - 1", 1', 2", 2', 4", 4' и ребра AD пирамиды с двумя гранями призмы - 3", 3' и 5", 5' построены. Соединяем проекции точек, принадлежащих одной грани, и получаем проекции 1" 2" 3" 4" 5" 1", 1' 2' 3' 4' 5' 1' ломаной линии пересечения.

Построение в правой части чертежа проекции 6" 7" 8" 9" 10" 6", 6' 7' 8' 9' 10' 6' линии пересечения аналогично. Порядок постро­ения иллюстрируется стрелками.

После построения проекций линий пересечения многог­ранников обводят проекции оставшихся частей ребер многог­ранников.

Заметим, что переднее и заднее ребра пирамиды не пересекают поверхность призмы.

 





Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 529 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.