ТРАНСФОРМАТОРЫ
Трансформаторы широко применяются в системах передачи и распределения электроэнергии. Передача электроэнергии на дальние расстояния осуществляется при высоком напряжении (до 500 кВ и более), благодаря чему значительно уменьшаются электрические потери в линии электропередачи. Получить такое высокое напряжение в генераторе невозможно, поэтому электроэнергия после генератора подается на повышающий трансформатор, в котором напряжение увеличивается до требуемого значения. Это напряжение должно быть тем выше, чем больше протяженность линии электропередачи и чем больше передаваемая по этой линии мощность. Например, при передаче электроэнергии мощностью 106 кВт на расстояние 1000 км необходимо напряжение 500 кВ. В местах распределения электроэнергии между потребителями устанавливают понижающие трансформаторы, которые понижают напряжение до требуемого значения. И, наконец, в местах потребления электроэнергии напряжение еще раз понижают посредством трансформаторов до 220, 380 или 660 В. При таком напряжении электроэнергия подается непосредственно потребителям - на рабочие места предприятий и в жилые помещения. Таким образом, электроэнергия переменного тока в процессе передачи от электростанции к потребителям подвергается трех-, а иногда и четырехкратному трансформированию. Помимо этого основного применения трансформаторы используются в различных электроустановках (нагревательных, сварочных и т. п.), устройствах автоматики, связи и т.д.
Рабочий процесс трансформатора
Назначение и области применения трансформаторов
Трансформатором называют статическое электромагнитное устройство, имеющее две (или более) индуктивно связанные обмотки и предназначенное для преобразования посредством явления электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока при неизменной частоте.
В общем случае вторичная система переменного тока может отличаться от первичной любыми параметрами: значениями напряжения и тока, числом фаз, формой кривой напряжения (тока), частотой. Наибольшее применение в электротехнических установках, а также в энергетических системах передачи и распределения электроэнергии имеют силовые трансформаторы, посредством которых изменяют значения переменного напряжения и тока. При этом число фаз, форма кривой напряжения (тока) и частота остаются неизменными.
В зависимости от назначения трансформаторы разделяют на
- силовые трансформаторы общего назначения применяются в линиях передачи и распределения электроэнергии, а также в различных электроустройствах для получения требуемого напряжения
- автотрансформаторы;
- измерительные трансформаторы – применяются измерения параметров энергии переменного тока с большими параметрами и снабжения энергией устройств автоматики на трансформаторных подстанциях и где нет возможности поручения требуемого напряжения;
- специального назначения. К ним относятся печные и сварочные трансформаторы, трансформаторы для устройств автоматики (пик-трансформаторы, импульсные, умножители частоты и т.п.), испытательные и измерительные трансформаторы и т. д.
Принцип действия трансформаторов
Простейший силовой трансформатор состоит из магнитопровода (сердечника), выполненного из ферромагнитного материала (обычно листовая электротехническая сталь), и двух обмоток, расположенных на стержнях магнитопровода (рис. 1.1, а). Одна из обмоток, которую называют первичной, присоединена к источнику переменного тока Г на напряжение U1. К другой обмотке, называемой вторичной, подключен потребитель ZН. Первичная и вторичная обмотки трансформатора не имеют электрической связи друг с другом, и мощность из одной обмотки в другую передается электромагнитным путем. Магнитопровод, на котором расположены эти обмотки, служит для усиления индуктивной связи между обмотками.
а) б)
Рис. 1.1. Электромагнитная (а) и принципиальная (б) схемы трансформатора
Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток i1, который создает в магнитопроводе переменный магнитный поток Ф. Замыкаясь в магнитопроводе, этот поток сцепляется с обеими обмотками (первичной и вторичной) и индуцирует в них ЭДС:
в первичной обмотке ЭДС самоиндукции
e1 = –w1(dФ/dt), (1.1)
во вторичной обмотке ЭДС взаимоиндукции
е2 = –w2(dФ/dt), (1.2)
где w1 и w2 - число витков в первичной и вторичной обмотках трансформатора.
При подключении нагрузки ZH к выводам вторичной обмотки трансформатора под действием ЭДС е2 в цепи этой обмотки создается ток i2, а на выводах вторичной обмотки устанавливается напряжение U2. В повышающих трансформаторах U2 > U1, а в понижающих U2 < U1.
Из (1.1) и (1.2) видно, что ЭДС е1 и е2, наводимые в обмотках трансформатора, отличаются друг от друга лишь за счет разного числа витков w1 и w2 в обмотках, поэтому, применяя обмотки с требуемым соотношением витков, можно изготовить трансформатор практически на любое отношение напряжений.
Обмотку трансформатора, подключенную к сети с более высоким напряжением, называют обмоткой высшего напряжения (ВН); обмотку, присоединенную к сети меньшего напряжения, - обмоткой низшего напряжения (НН).
На рис. 1.1, б показано изображение однофазного трансформатора на принципиальных электрических схемах.
Трансформаторы обладают свойством обратимости: один и тот же трансформатор можно использовать в качестве повышающего и понижающего. Но обычно трансформатор имеет определенное назначение: либо он повышающий, либо - понижающий.
Трансформатор - это аппарат переменного тока. Если же его первичную обмотку подключить к источнику постоянного тока, то магнитный поток в магнитопроводе трансформатора также будет постоянным как по величине, так и по направлению [(dФ/dt) = 0], поэтому в обмотках трансформатора не будет наводиться ЭДС, а следовательно, электроэнергия из первичной цепи не будет передаваться во вторичную.
Классифицируют трансформаторы по нескольким признакам:
по назначению - силовые общего и специального назначения, импульсные, для преобразования частоты и т.д.;
по виду охлаждения - с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением (см. § 1.3);
по числу трансформируемых фаз - однофазные и трехфазные;
по форме магнитопровода - стержневые, броневые, бронестержневые, тороидальные;
по числу обмоток на фазу - двухобмоточные, многообмоточные.