Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Центробежные вентиляторы




 

Наиболее широкое распространение в практике получили цент­робежные вентиляторы, которые применяются в разветвленных вентиляционных установках, в системах пневматического транс­порта, в котельных установках в качестве тяго-дутьевых устройств и т. п.

Рассмотрим конструктивную схему центробежного вентиля­тора (рис. 129). Воздух в вентилятор поступает через входной патрубок / и направляется в рабочее колесо 2, которое состоит из: ступицы 5, ведущего диска 7, лопастей и (ведомого) покрыв­ного кольцевого диска 9. Обычно рабочее колесо приводится во вращение при помощи ступицы 5, насаженной на рабочий вал 6, который передает движение непосредственно от двигателя или с помощью трансмиссионной передачи. На ступице смонтирован ведущий диск, к которому прикреплены лопасти рабочего колеса. Со стороны входа на лопастях рабочего колеса крепится по­крывной кольцевой диск 9.

Вращающееся рабочее колесо помещается в неподвижный спиральный кожух 8, имеющий на выходе расширяющийся па­трубок 4. Воздух или газ, попадающий через входной патрубок I в рабочее коле­со 2, лопастями отбрасыва­ется с большой скоростью к периферии. Передача энер­гии воздуху завершается в рабочем колесе. Часть этой энергии вследствие силового воздействия лопастей рабо­чего колеса получается в виде потенциальной энергии давления. Другая часть, в зависимости от степени ре­активности рабочего колеса, получается в виде кинетической энергии (скоростного напора).

Воздух, поступающий с большой скоростью из рабочего ко­леса, тормозится в кожухе вентилятора. При этом скоростной напор преобразуется в потенциальную энергию давления. Спи­ральная форма кожуха способствует этому процессу. Избыток давления на выходе из вентилятора в патрубке 4 идет на прео­доление сопротивлений и противодавления в нагнетательной системе трубопроводов.

Чтобы избежать утечки воздуха, который был подвергнут сжатию в вентиляторе, устанавливают различного типа уплот­нения и осуществляют сопря­жение входного патрубка вен­тилятора и входной кромки рабочего колеса с минималь­ным зазором ~ 1 мм. С этой же целью язык 3 спиральной камеры подводят как можно ближе к внешнему ободу ра­бочего колеса.

Центробежные вентилято­ры различаются по создавае­мому ими полному давлению (сумме статического и дина­мического давлений) при по­даче нормального атмосферно­го воздуха (плотность воздуха на входе в вентилятор р =1,2кг/м3).

Для создания полного дав­ления ~ 1,0 кПа применяют вентилятор низкого давления

(рнс. 130, а). Вентиляторы среднего давления используются в тех случаях, когда необходимо получить давление от 1,0 до 3,0 кПа (рис 130, б). Наибольшее полное давление, равное 3,0— 15,0 кПа, достигается с помощью вентиляторов высокого давле­ния (рис. 130, г).

Однако приведенное разделение вентиляторов на типы сле­дует считать условным. Например, недостаточно определить тип вентилятора только по одному давлению без указания подачи. Более удобно вентиляторы, как и насосы, разделять по значе­нию удельной быстроходности при оптимальном режиме работы.

Отечественная промышленность выпускает вентиляторы раз­личных размеров. Номер вентилятора указывает диаметр его рабочего колеса в дециметрах. Пылевые вентиляторы изготовля­ются из наиболее износоустойчивых материалов с утолщенными лопатками (рис. 130, в). Иногда лопатки рабочего колеса нава­ривают твердыми сплавами.

Центробежные вентиляторы, применяемые как дымососы, имеют некоторые особенности. Они изготовляются из более прочных температуроустойчивых материалов. Кожух, подшипни­ки, а иногда вал и рабочее колесо дымососа охлаждаются водой. В спиральном кожухе дымососов устраиваются люки для реви­зии и чистки. Рабочие колеса дымососов являются тихоходными и изготовляются с малым числом лопаток. Для увеличения срока службы дымососов перед ними устанавливают золоуловители различных конструкций.

Методы регулирования подачи центробежных вентиляторов в принципе мало отличаются от методов регулирования центро­бежных насосов. Наиболее простым и широко применяемым в практике является метод регулирования подачи задвижкой или заслонкой, установленной на нагнетательной линии вентилятора. В этом случае регулирование возможно только в сторону умень­шения подачи. Прикрывание задвижки ведет к увеличению со­противления сети, к изменению ее Q - р характеристики.

Другим способом регулирования подачи вентилятора являет­ся изменение частоты вращения его рабочего колеса. Этот спо­соб регулирования применим не только для уменьшения подачи, но и для ее увеличения. Он не влечет за собой бесполезной за­траты энергии, так как отсутствует искусственно создаваемое сопротивление сети.

Однако способ регулирования подачи вентилятора путем из­менения частоты вращения, несмотря на свои преимущества, реже применяется в практике, так как пока отсутствуют доста­точно удобные и экономичные способы изменения частоты вра­щения применяемых для привода электродвигателей.

Кроме указанных способов иногда используется метод регу­лирования подачи вентилятора с помощью направляющего ап­парата, устанавливаемого в непосредственной близости от входа в рабочее колесо. Конструктивно такой аппарат представляет собой осевую или радиально расположенную решетку с поворот­ными лопастями, которые изменяют направление всасываемого потока, сокращают количество поступающего газа или воздуха в рабочее колесо или полностью прекращают всасывание.

Анализ изменения расхода мощности вентилятором при ре­гулировании его подачи задвижкой на нагнетании и с помощью поворотных лопастей на всасывании при n=const подтвержда­ет преимущество последнего.

В заключение следует заметить, что при любой постоянной частоте вращения рабочего колеса центробежного вентилятора, расход мощности увеличивается с увеличением подачи. Поэто­му для предотвращения перегрузки электродвигателя включе­ние в работу вентилятора должно производиться при закрытой задвижке (Q =0).

Рационально сконструированный вентилятор характери­зуется возможно меньшими массой, металлоемкостью и габаритами, высокой экономичностью и надежностью, а также технологичностью конструкции и наименьшими возможными эксплуатационными расходами. Особые требования предъявляются к конструкции корпуса и ра­бочего колеса.

Рабочее колесо должно быгь тщательно отбаланси­ровано. Прочность и жесткость колеса зависят от кон­струкции и материала, из которого оно выполнено. С увеличением ширины колеса прочность и жесткость его снижаются. Конструктивные исполнения рабочих ко­лес представлены на рис. 131.

Лопатки барабанных колес (рис. 131, а) загнуты впе­ред, ширина колес достигает 0,5D. Окружная скорость колес допускается до 30—40 м/с.

Ширина кольцевых колес (рис. 131, б) находится в пределах (0,2—0,4) D. Их окружная скорость допус­кается до 60 м/с.

Большой прочностью и жесткостью обладают колеса с коническим передним диском (рис. 131, в). Их окруж­ная скорость допускается до 85 м/с.

Трехдисковые колеса (рис. 131, г) применяются в вен­тиляторах двустороннего всасывания. Достоинством ко­лес такой конструкции является отсутствие осевого дав­ления.

Однодисковые колеса (рис. 131, д)применяются, на­пример, в пылевых вентиляторах и в вентиляторах высо­кого давления. Лопатки у этих колес присоединяются к диску и ступице.

Бездисковые колеса (рис. 131, е) с лопатками, при­соединяемыми непосредственно к ступице, находят при­менение в пылевых вентиляторах.

Жесткость и прочность рабочего колеса во многом определяются способом соединения лопаток с дисками. Наибольшее распространение получили клепаные коле­са, которые более трудоемки при изготовлении, но отли­чаются большой прочностью. Соединение на шипах ме­нее трудоемко при изготовлении и позволяет механизировать сборку колес. Наиболее жесткая и прочная кон­струкция колеса получается при сварном соединении ло­паток с дисками. Однако, несмотря на простоту и деше­визну такого соединения по сравнению с клепаным, цельносварная конструкция колеса рациональна в слу­чаях одинакового срока службы лопаток и дисков. Если же наблюдается интенсивный износ лопаток тяжело нагруженных колес, работающих при больших окружных скоростях, целесообразнее увеличить долговечность до­рогостоящих дисков. В этих случаях оправдано примене­ние колес клепаной конструкции, допускающей много­кратную замену лопаток путем переклепки с последую­щей балансировкой колеса.

Спиральный корпус, как правило, представляет со­бой конструкцию, сваренную из листового металла. Очень крупные вентиляторы имеют корпуса, состоящие из двух или трех частей, скрепленных на фланцах бол­тами. Боковые стенки корпуса, если не придать им до­полнительной жесткости, могут вибрировать. Для устра­нения вибрации стенки оребряют металлическими по­лосами.

В современных аэродинамических вентиляторах пред­усматриваются входные патрубки достаточно сложных конфигураций, вследствие чего для их изготовления требуются сложные штампы и мощные прессы. Для се­рийных вентиляторов, например Ц4-70, эти патрубки могут быть изготовлены из полосы, свернутой в конус. Дополнительную добавочную жесткость патрубку при­дает кольцо, одновременно предназначенное для ликви­дации разрывов аэродинамической характеристики рL.

Величина зазора между входным патрубком и перед­ним диском колеса, как уже было отмечено, оказывает существенное влияние на КПД вентилятора. С увеличе­нием зазора количество воздуха, перетекающего через него со стороны нагнетания на сторону всасывания, воз­растает и подача вентилятора уменьшается.

Вентиляторы изготавливают одностороннего и дву­стороннего всасывания правого и левого вращения. Если смотреть со стороны входа воздуха, то вентилятор, рабочее колесо которого вращается по часовой стрелке, называется вентилятором правого вращения, против ча­совой стрелки — левого вращения. На вентилятор дву­стороннего всасывания следует смотреть со стороны всасывания, свободной от привода.

Для вентиляторов общего назначения ГОСТ 10616—73 с изм. устанавливает семь положений корпуса, опреде­ляемых углом поворота относительно исходного нуле­вого положения. Углы поворота корпуса отсчитывают по направлению вращения рабочего колеса в соответствии с рис. 132. Положения корпуса Пр225° и Л 225° отсут­ствуют, что объясняется трудностью присоединения сети к такому вентилятору. Корпуса мельничных вентилято­ров могут устанавливаться в 24 положениях (0—345° через 15°). Дутьевые вентиляторы и дымососы имеют 18 положений корпуса (0—255° через 15°).

Вентиляторы соединяются с электродвигателями од­ним из следующих способов:

рабочее колесо вентилятора закреплено непосредст­венно на валу электродвигателя;

с помощью эластичной муфты;

клиноремениой передачей с постоянным передаточ­ным отношением;

регулируемой бесступенчатой передачей через гид­равлические или индукторные (электрические) муфты скольжения.

ГОСТ 5976—73 с изм. предусматривает семь кон­структивных схем соединения вентилятора с приводом (рис. 133).

Исполнение 1 (так называемый электровен­тилятор) применяется для вентиляторов небольших раз­меров. При этом достигаются компактность установки, ее надежность, относительная бесшумность, а также эко­номичность благодаря отсутствию потерь в передаче.

Исполнения 2 и 4 широкого применения не получили, так как передняя опора и подшипник, установленные во входном отверстии, затрудняют вход воздуха в вен­тилятор.

Исполнение 3 рекомендуется при совпадении частот вращения электродвигателя и вентилятора, имеющего рабочее колесо большого диаметра или большой массы.

Исполнения 5 и 7 применяются для вентиляторов дву­стороннего всасывания. При этом обеспечивается большая жесткость конструкции (рабочее колесо располо­жено между подшипниками), по определенные сложно­сти вызывает присоединение к вентилятору всасываю­щих воздуховодов. Поэтому эти схемы исполнения чаще всего применяются при воздухозаборе непосредственно из помещения или при установке вентилятора в откры­той камере.

Исполнение 6 нашло широкое применение, что объяс­няется простотой присоединения вентилятора к сети и тем, что в случае необходимости можно легко и быст­ро проводить замену приводных ремней.

Помимо рассмотренных можно отметить еще две схе­мы исполнения, применяемые для так называемых крыш­ных вентиляторов (рис. 134). Отличительными конструк­тивными особенностями этих вентиляторов являются го­ризонтальное расположение рабочего колеса / и корпу­са 3, в котором выходное отверстие имеет кольцевую форму, и вертикальное расположение электродвигате­ля 2. Эти вентиляторы широко применяются для реше­ния простейших вентиляционных задач. Имея простую и легкую конструкцию, крышные вентиляторы легко монтируются на крышах зданий, т. е. не занимают по­лезной производственной площади. Они имеют сравни­тельно невысокий уровень шума и применяются для вентиляции складов, цехов, заводских помещений, жи­лых зданий, сельскохозяйственных объектов и т. д. Поскольку эти вентиляторы работают практически без сети, их рабочий режим соответствует нулевому или не­большому коэффициенту статического давления и коэф­фициенту подачи, близкому к максимальному.

Крышные вентиляторы следует располагать на рас­стояниях между любой парой вытяжных отверстий с диаметрами d1 и d2,не меньших . Область экономически эффективного использования крышных вентиляторов соответствует теплонапряженности поме­щений q =30 Вт/м3; при q >30 Вт/м3 более эффективно применение вытяжных аэрационных фонарей.

Единая общепринятая классификация радиальных вентиляторов до сих пор не разработана. Однако вен­тиляторы можно классифицировать по отдельным при­знакам: назначению, создаваемому давлению, быстро­ходности, компоновке и т. д.

Радиальные вентиляторы, применяемые практически во всех отраслях народного хозяйства, можно разде­лить на две большие группы: вентиляторы общего на­значения и вентиляторы специального назначения.

Вентиляторы общего назначения предназначены для перемещения воздуха и других газовых смесей, агрес­сивность которых по отношению к углеродистым сталям обыкновенного качества не выше агрессивности воздуха с температурой до 80°С, не содержащих пыли и других твердых примесей в количестве более 100 мг/м3, а так­же липких веществ и волокнистых материалов. Для вентиляторов двухстороннего всасывания с расположе­нием ременной передачи в перемещаемой среде темпе­ратура перемещаемой среды не должна превышать 60°С. Вентиляторы применяют в системах вентиляции и воздушного отопления производственных, обществен­ных и жилых зданий, а также для других санитарно-технических и производственных целей. Серийно выпус­кают вентиляторы номеров от 2,5 до 20.

В соответствии с ГОСТ 5976—73 с изм. вентиляторы общего назначения имеют обозначение типа, состоящее из буквы Ц (центробежный), пятикратного значения коэффициента полного давления и значения быстроход­ности при режиме , округленных до целых чисел. К этому обозначению добавляют номер вентилятора, численно равный диаметру колеса в дециметрах. Так, вентилятор с диаметром рабочего колеса d = 0,4 м, имеющий при режиме коэффициент полного давления = 0,86 и быстроходность ns =70,3, обозначают Ц4-70 № 4. Такое обозначение удобно тем, что позво­ляет по назначению оценить аэродинамические пара­метры вентиляторов.

Вентиляторы Ц4-70 № 2,5; 3,15 (3,2); 4; 5; 6,3; 8; 10 и 12,5 изготовляют по конструктивной схеме исполне­ния 1 с рабочим колесом, непосредственно установлен­ным на валу электродвигателя.

Вентиляторы Ц4-70 № 8; 10; 12,5 и 16 изготовляют по конструктивной схеме исполнения 6 со шкивом для привода посредством клиноременной передачи. Вентиля­торы № 2,5; 3,15 (3,2); 4; 5; 6,3; 8; 10 и 12,5 выпус­каются с промежуточными диаметрами рабочего колеса, что позволяет, но меняя корпус, менять его характери­стику, устанавливая одно из колес: для № 5 и 8 — 90; 95; 100 или 105 % номинального диаметра; для вентиля­торов № 2,5; 3,15; 4 и 6,3 — 95; 100 или 105% номи­нального диаметра и для вентиляторов № 10 и 12,5 —90; 95 и 100 % номинального диаметра.

Вентиляторы специального назначения применяются для работы в системах пневмотранспорта; для переме­щения среды, содержащей агрессивные вещества, газов с высокой температурой, газопаровоздушных взрыво­опасных смесей и т. д. Эти вентиляторы, в свою очередь можно, разделить на пылевые- коррозионно-стойкие, искрозащищенные, тягодутьевые., малогабаритные, су­довые, шахтные, мельничные и т. д.

Вентиляторы, предназначенные для перемещения воз­духа с различными механическими примесями, назы­ваются пылевыми. В обозначении этих вентиляторов добавлена буква П.

Пылевые вентиляторы типа ЦП7-40 предназначены для перемещения невзрывоопасных неабразивных пылегазовоздушных смесей, агрессивность которых по отно­шению к углеродистой стали обыкновенного качества не выше агрессивности воздуха, с температурой не выше 80°С, не содержащих липких веществ и волокнистых материалов и с содержанием механических примесей в перемещаемой среде до 1 кг/м3.

Пылевые вентиляторы применяются для удаления древесных стружек, металлической пыли от станков, а также в системах пневмотранспорта зерна и для дру­гих целей. Чтобы транспортируемые материалы не за­стревали в рабочем колесе и корпусе, число лопаток колеса должно быть небольшим. Передний диск колеса всегда отсутствует, а передние участки лопаток имеют форму, обеспечивающую сбрасывание попавших в коле­со материалов под действием центробежных сил. Боль­шой зазор между входным патрубком и колесом являет­ся причиной того, что пылевые вентиляторы имеют более низкий КПД, чем вентиляторы общего назначения.

Номенклатура серийных пылевых вентиляторов неве­лика: ЦП7-40, ЦП6-46 и ЦП6-45.

Пылевые вентиляторы серии ЦП7-40 имеют сварные бездисковые колеса с шестью лопастями, загнутыми вперед. Боковые стенки корпуса имеют одинаковую кон­струкцию. Симметричная конструкция рабочего колеса и корпуса позволяет собирать из одних и тех же узлов вентиляторы левого и правого вращения.

Рабочее колесо пылевого вентилятора серии Ц6-46 выполнено в виде шестилопастного однодискового кле­паного колеса со стальной литой втулкой. Вследствие консольного крепления лопаток к диску и снижения их прочности при неравномерном истирании механическими примесями эти вентиляторы не применяются при боль­ших окружных скоростях, поэтому они развивают срав­нительно невысокие давления и могут применяться в се­тях с небольшим сопротивлением.

Иногда с целью увеличения срока службы лопаток рабочего колеса их поверхности навариваются износо­устойчивыми твердыми сплавами. С этой же целью обе­чайка спирального корпуса может быть покрыта внутри броневыми плитами.

В конструкциях коррозионно-стойких вентиляторов, предназначенных для перемещения агрессивных смесей, применяются материалы, стойкие к этим смесям (нержа­веющая сталь, титановые сплавы, винипласт, полипропи­лен), либо их проточная часть напыляется антикорро­зионными покрытиями. Такими материалами являются нержавеющая сталь марки 12Х18Н10Т и титановый сплав ВТ 1-0.

Область применения вентиляторов из нержавеющей стали резко ограничена их недостаточно высокими анти­коррозионными свойствами. Для ряда агрессивных сред срок службы этих вентиляторов составляет 4—6 мес., а иногда и меньше.

Пластмассовые вентиляторы, несмотря на более вы­сокие антикоррозионные свойства по сравнению с Бентиляторами из нержавеющей стали, обладают рядом существенных недостатков. Это в первую очередь низ­кие прочностные характеристики материалов, что не поз­воляет изготавливать вентиляторы больших размеров, при этом максимальная окружная скорость составляем 31 м/с. Поскольку винипласт неморозостоек, то венти­ляторы из него могут быть установлены только в отап­ливаемых помещениях.

Вентиляторы из титанового сплава могут использо­ваться во всех средах, где происходит пассивация по­верхности в результате образования окислов, гидридов и сульфоокисных соединений титана. Такие вентиляторы нельзя применять в газовоздушных средах, содержащих пары фтористоводородной и плавиковой кислот, фтора и брома, а также сухие хлор и йод. Однако следует от­метить, что решить проблему борьбы с коррозией ти­тановые вентиляторы не могут, так как промышленность выпускает их в ограниченном количестве.

Принципиально новые возможности открываются в связи с применением технологии напыления порош­ковых полимерных материалов в электростатическом поле. При этом нет необходимости в изменении техно­логии изготовления вентиляторов. Достаточно на за­ключительном технологическом этапе заменить процесс их окраски жидкими лакокрасочными материалами про­цессом напыления полимерных порошков.

Перемещение взрывоопасных газовых смесей венти­ляторами общего назначения недопустимо, так как при трении деталей рабочего колеса о корпус возможно по­явление искр, способных поджигать эти смеси. Следо­вательно, для перемещения таких смесей должны при­меняться вентиляторы, изготовленные из материалов, ко­торые при трении или соударении подвижных частей с неподвижными исключали бы возможность появления искр.

В зависимости от уровня защиты от ценообразова­ния искрозащищенные вентиляторы подразделяются на следующие:

с повышенной защитой от искрообразовапия, в ко­торых предусмотрены средства и меры, затрудняющие возникновение опасных искр только в режиме их нор­мальной работы. Изготовляются такие вентиляторы или из алюминиевых сплавов, или из разнородных металлов;

искробезопасные, в которых предусмотрены средства и меры защиты от искрообразоваиия как при нормаль­ной работе, так и при возможном кратковременном тре­нии рабочего колеса о корпус вентилятора. Эти венти­ляторы разработаны на основе алюминиевых сплавов с антистатическим пластмассовым покрытием. Вид по­крытия— графитонаполненный полиэтилен или графитонатюлпенный пентапласт, — выбирается в зависимости от характеристики перемещаемых сред, т. е. от их спо­собности противостоять коррозионному воздействию сред.

Вентиляторы из алюминиевых сплавов выполняются по конструктивному исполнению 1 (ГОСТ 5976—73 с изм.) и комплектуются взрывозащищенными электро­двигателями. В соответствии с техническими условиями они предназначены для перемещения некоторых газо­паровоздушных взрывоопасных смесей, не вызывающих ускоренной коррозии материалов и покрытий проточной части вентиляторов, не содержащих взрывчатых ве­ществ, взрывоопасной пыли, окислов железа, добавоч­ного кислорода, липких веществ и волокнистых мате­риалов, с запыленностью не более 100 мг/м3 и темпе­ратурой не выше 80°С. Температура окружающей среды от —40 до 40°С (до 45°С для тропического исполнения).

Вентиляторы из алюминиевых сплавов нельзя при­менять для перемещения газопаровоздушных смесей от технологических установок, в которых взрывоопасные вещества нагреваются выше температуры их самовос­пламенения или находятся под избыточным давлением. Их также не разрешается использовать в качестве хи­мически стойких вентиляторов. Технические данные и область применения таких вентиляторов более подробно приведены в соответствующих технических условиях. В ТУ 22-4942-81 приведен перечень смесей, для пере­мещения которых предназначены эти вентиляторы.

Вентиляторы из разнородных металлов также вы­полняются по конструктивному исполнению 1 (ГОСТ 5976—73 с изм.) и комплектуются взрывозащищенными электродвигателями. В соответствии с техническими ус­ловиями они предназначены для перемещения некото­рых парогазовоздушных взрывоопасных смесей, не вы­зывающих ускоренной коррозии материалов и покрытий проточной части вентиляторов, с запыленностью не бо­лее 100 мг/м3, не содержащих взрывоопасной пыли, взрывчатых веществ, липких и волокнистых материалов.

Температура перемещаемой среды: вентиляторами ис­полнения В1 и И1-03 — 80°С; вентиляторами исполне­ния В1Ж2 и И1-02—150°С. Температура окружающей среды от —40 до 40°С (45 °С для тропического испол­нения).

Вентиляторы из разнородных металлов нельзя при­менять для перемещения парогазовоздушных смесей, со­держащих добавочный кислород, а также для переме­щения смесей от технологических установок, в которых взрывоопасные вещества нагреваются выше температу­ры их самовоспламенения или находятся под избыточным давлением. Технические данные и область применения таких вентиляторов более подробно приведены в соот­ветствующих технических условиях. В ТУ 22-5698—84 приведен перечень смесей, для перемещения которых предназначены эти вентиляторы.

Для перемещения смесей, взрывающихся от удара, вентиляторы применять нельзя. (В этих случаях используют эжекторы.)

В зависимости от применения различают два типа тягодутьевых вентиляторов: дымососы и дутьевые.

Дымососы применяют для отсасывания дымовых га­зовое температурой до 200°С из топок пылеугольных котлоагрегатов. Поскольку газы содержат твердые час­тицы золы, вызывающие значительный износ деталей дымососа, лопатки рабочего колеса выполняют утолщен­ными, а внутреннюю поверхность обечайки корпуса по­крывают броневыми листами. Ходовая часть дымосо­сов имеет охлаждающий элемент в виде термомуфты или змеевика охлаждения масла в узле подшипников. По­этому корпуса подшипников ходовой части дымососов изготовляют в виде литых или сварных коробок, внутри которых находится масло, охлаждаемое проточной во­дой, циркулирующей по змеевику.

Применяют дымососы одно- и двухстороннего всасы­вания. Для регулирования работы они оснащаются осе­выми направляющими аппаратами. В обозначении типа дымососов, например ДН-15, буквы обозначают: Д — дымосос; Н — загнутые назад лопатки рабочего колеса; цифры означают диаметр рабочего колеса в дециметрах.

Дутьевые вентиляторы предназначены для подачи воздуха в топочные камеры котлоагрегатов тепловых электростанций или крупных промышленных котельных установок. Так же, как и дымососы дутьевые вентиля­торы выполняют односторонними и двухсторонними. Они также оснащены осевыми направляющими аппаратами. Серийно изготовляют дутьевые вентиляторы номеров 8—36. Вентиляторы горячего дутья типа ВГД и ГД предназначены для подачи первичного воздуха с тем­пературой до 400 °С. В обозначении типа дутьевых вен­тиляторов, например ВДН-10, буквы означают: В — вен­тилятор; Д — дутьевой; Н — загнутые назад лопатки ра­бочего колеса.

Конструкция тягодутьевых нагнетателей не рассчи­тана на восприятие нагрузок от массы и теплового рас­ширения подводящих и отводящих участков сети, за и перед ними необходимо устанавливать компенсаторы. Вентиляторы типа ДН и ВДН предназначены для уста­новки в помещении; возможна их эксплуатация вне по­мещения при температуре не ниже —30°С, дутьевые вен­тиляторы допускается устанавливать только после ап­паратов очистки. Подбор тягодутьевых машин следует выполнять в соответствии с данными заводов-изготови­телей.

Мельничные вентиляторы предназначены для пнев­матического транспортирования и неагрессивной уголь­ной пыли в системах пылеприготовления котлоагрегатов, работающих на пылевидном топливе, и для подачи пы­левидного топлива в пылеугольные и муфельные горел­ки. Конструкции этих вентиляторов выполняют с уче­том уменьшения степени износа стенок спирального кор­пуса и рабочего колеса.

Малогабаритные вентиляторы с диаметрами рабочих колес менее 200 мм являются, как правило, встроенны­ми вентиляторами. Будучи частью стационарных и по­движных машин и технологических установок, они долж­ны соответствовать жестким требованиям к габаритам, массе и КПД. Привод таких вентиляторов осуществляет­ся обычно от малогабаритных высокоскоростных элек­тродвигателей с частотой вращения до 20 000 мин-1; их подача составляет от 1 до 300 л/с, а полное давление — от 200 до 7000 Па.

Судовые вентиляторы используют в системах венти­ляции машинно-котельных отделений, служебных и жи­лых помещений, а также для охлаждения приборов и механизмов. Помимо требований, предъявляемых к вен­тиляторам общего назначения, судовые вентиляторы должны удовлетворять ряду специфических требований: быть виброударостойкими, создавать малый уровень шума, иметь небольшие габариты и массу, устойчиво ра­ботать в условиях крена и дифферента. Наиболее пол­но всем этим требованиям отвечают судовые вентиля­торы с радиальными лопатками рабочего колеса еди­ной серии ЦС.

Шахтные вентиляторы используют в вентиляционных системах шахт и рудников для обеспечения больших расходов и давлений. Радиальные шахтные вентилятеи ры применяют в основном в вентиляторных установках главного проветривания, расположенных на поверхности земли и перемещающих весь воздух, проходящий по шахте или ее крылу. Серийно выпускают вентиляторы больших номеров — № 11; 16; 25; 32 и 47.

Вентиляторы главного проветривания работают в се­ти с переменным сопротивлением, поэтому они имеют следующие устройства для экономичного регулирования: осевой направляющий аппарат, регулируемый привод, поворотные закрылки лопаток рабочего колеса и др. На входе в вентилятор устанавливают двойной поворот, входную коробку и тройник, на выходе из вентилято­ра— диффузор, поворотное колено, выходную коробку. Таким образом, вентилятор фактически является частью вентиляторной установки. Поэтому в каталогах, как пра­вило, приведены аэродинамические характеристики вен­тиляторных установок, полученные в натурных условиях или при испытаниях полупромышленных моделей венти­ляторов с присоединенными элементами.

В зависимости от полного давления, создаваемого при номинальном режиме, в соответствии с ГОСТ 5976—73 с изм. вентиляторы подразделяют на вентиля­торы низкого, среднего и высокого давления.

Вентиляторы низкого давления создают полное дав­ление до 1000 Па. К ним относятся вентиляторы боль­шой и средней быстроходности, у которых рабочие коле­са имеют широкие листовые лопатки. Допустимая окруж­ная скорость для таких колес не превышает 50 м/с.

Вентиляторы среднего давления создают полное дав­ление до 3000 Па. Лопатки этих вентиляторов могут быть загнуты как по направлению вращения колеса, так и против направления его вращения. Максимальная окружная скорость рабочего колеса может достигать 80 м/с.

Вентиляторы высокого давления создают полное дав­ление свыше 3000 Па.

Рабочие колеса вентиляторов, создающих давление до 1000 Па, как правило, имеют лопатки, загнутые назад, так как они более эффективны. В случае широ­ких колес применяют профильные лопатки с плоским или слегка наклонным передним диском.

Полное давление более 10 000 Па могут создавать лишь вентиляторы малой быстроходности с узкими рабо­чими колесами, напоминающими компрессорные. Их окружная скорость при соответствующем конструктив­ном исполнении может достигать 200 м/с. Такие венти­ляторы находят применение в системах с небольшими расходами воздуха и значительным сопротивлением.

По быстроходности вентиляторы делят на вентиля­торы большой (ns>60), средней (ns = 30÷60) и малой (п s<30) быстроходности.

Вентиляторы большой быстроходности имеют широ­кие рабочие колеса с небольшим числом загнутых назад лопаток. Коэффициент давления <0,9. Максимальный КПД может достигать 0,9.

К вентиляторам средней быстроходности относятся как вентиляторы с колесом барабанного типа с загну­тыми вперед лопатками и большим диаметром входа, у которых коэффициенты давления близки к максималь­но возможным ( 3), а КПД достигает лишь 0,73, так и вентиляторы, имеющие рабочие колеса значительно меньшей ширины с загнутыми назад лопатками, неболь­шими коэффициентами давления ( 1) и КПД, дости­гающим 0,87.

Вентиляторы малой быстроходности имеют неболь­шие диаметры входа, довольно узкие рабочие колеса, небольшую ширину и раскрытие спирального корпуса. Лопатки колеса могут быть загнуты вперед и назад. КПД этих вентиляторов не превышает 0,8.

В зависимости от компоновки вентиляторы могут быть разделены на переносные, полустационарные и ста­ционарные.

Переносные вентиляторы изготовляются с односто­ронним входом и имеют цельную конструкцию (ходовая часть, корпус, а иногда и электродвигатель монтируют­ся на общей жесткой стойке). Простота монтажа и де­монтажа таких вентиляторов является существенным их преимуществом перед другими вентиляторами. К недостаткам переносных вентиляторов следует отнести отсут­ствие у них устройств для регулирования, что снижает их эксплуатационные качества. Кроме того, для осмотра и ремонта рабочего колеса эти вентиляторы нужно от­соединить от сети. Такую компоновку имеют обычно вен­тиляторы общего назначения.

Полу стационарные вентиляторы делают с одно- и двухсторонним всасыванием. Ходовая часть и электро­двигатель этих вентиляторов монтируются на общей раме. Корпус присоединяется к раме или устанавли­вается непосредственно на фундаменте с расположением выходного отверстия в любом нужном направлении. Ре­гулирование подачи осуществляется с помощью направ­ляющего аппарата. Для привода могут быть использо­ваны многоскоростные электродвигатели.

Характерной особенностью конструкции полустацио­нарных вентиляторов является то, что осмотр и ремонт их производятся без отсоединения от сети. Эти вентиля-/ торы применяются для главного и шурфового проветривания шахт и рудников, в качестве дымососов и дутье­вых вентиляторов, а также для общепромышленного назначения.

Стационарными выполняются крупные шахтные и рудничные вентиляторы и дымососы ТЭЦ и наболее крупные вентиляторы общего назначения.

Конструктивной особенностью стационарных вентиля­торов является то, что корпус, ходовая часть, стойка и электродвигатель взаимно связаны только фундамен­том. Регулирование осуществляется осевыми или упро­щенными направляющими аппаратами. Корпус стацио­нарного вентилятора устанавливается только в одном определенном положении. При свободном выходе воз­душного потока в атмосферу к выходному отверстию вентилятора присоединяют диффузор. Стационарные вен­тиляторы менее металлоемки, по монтаж их более сло­жен и требует больших первоначальных затрат. Такие установки определяются только при большом сроке их службы. Осмотр и ремонт их осуществляются без отсое­динения от сети.

 





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 3165 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2245 - | 2190 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.