Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Подшипники роторов




Роторы турбин и компрессоров опираются на опорные подшипники, которые воспринимают их вес. В свою очередь, на ротор действуют силы, возникающие при работе турбины или компрес­сора. Эти силы возникают при воздействии газа, который стре­мится сдвинуть ротор в осевом направлении в сторону меньшего давления. По направлению действия эти силы называют осевыми. Перемещению ротора в осевом направлении препятствует упор­ный подшипник.

При больших нагрузках длительно работают подшипники скольжения, которые в мощных ГТУ используются в качестве опорных и упорных. Для смазывания подшипников применяют турбинное масло.

В опорном подшипнике (рис. 14) шейка 3 ротора рас­полагается в цилиндрической полости, образованной верхним 2 и нижним / неподвижными вкладышами. Направление вращения ротора показано стрелкой 4. Масло под небольшим давлением по­дается в зазор между шейкой и вкладышами, омывает шейку в верхней части, проходя по" полости 8 в верхнем вкладыше, и си­лами трения о поверхность вращающегося ротора увлекается в

Д 8.

Рис. 14. Устройство опорного подшипника: 1, 2 — нижний в верхний вкладыши, 3 — шейка ротора, 4 — на­правление вращения, 5 — баббитовая заливка, 6 — ось расточки вкладышей, 7 — ось ротора, 8 — полость для прохода масла.

зазор между шейкой и нижним вкладышем. Таким образом между шейкой ротора и нижним вкладышем подшипника создается тон­кая пленка масла (масляный клин). Давление масла в масляном клине резко повышается. В результате создается усилие, равное весу той части ротора, которая приходится на данный подшипник, и ротор как бы «плавает» на масляной пленке.

При работе ГТУ ротор «всплывает» на масляной пленке так, что центр расточки подшипников и ось 7 шейки ротора не совпа­дают. Расстояние между ними "составляет 0,5—0,7 мм. Коэффици­ент трения при нормальной работе подшипника составляет 0,002—0,005; Но даже при таком малом коэффициенте трения вы­деляется большое количество теплоты и масло нагревается на,20—25° С. Чтобы уменьшить трение при пуске и останове ГТУ, поверхность вкладышей заливают баббитом 5 — легкоплавким спла­вом, обладающим низким коэффициентом трения.

Этот сплав состоит из 83% олова, 11% сурьмы и 6% меди (мар­ка Б-83).

В простейшем опорном подшипнике (рис. 15) нижний вкла­дыш 7, установленный' в корпус /, обычно опирается на него через три колодки 8 и установочные прокладки 9. Изменяя толщину этих прокладок, устанавливают нижний вкладыш в требуемое по­ложение, что необходимо при центровке ротора. Вследствие тре­ния вращающейся шейки ротора о масляную пленку на вкладыши действуют силы, стремящиеся сдвинуть их по окружности (про­вернуть). Нижний вкладыш фиксируется от поворота планками 6.

Шейка ротора 10 накрывается верхним вкладышем, который шпильками крепится к нижнему. Сверху, устанавливается крышка 4, которую соединяют болтами с корпусом подшипника через фланцы 3. Между крышкой и верхним вкладышем также разме­щают колодку с установочными прокладками. Масло поступает к подшипнику по трубе 2, размещенной в корпусе, через отверстие в колодке, установочной прокладке и нижнем вкладыше.

Так как при работе турбин и компрессоров их роторы враща­ются в прогнутом состоянии, подшипники устанавливают с учетом этого прогиба, возникающего под действием сил тяжести. Однако положение ротора относительно подшипников может изменяться и по другим причинам, например из-за изменения осевого усилия или деформации корпуса. Чтобы уменьшить перекосы шейки ротора относительно подшипника, применяют подшипники со сфери­ческими вкладышами (рис. 16).

 

Рис. 15. Поперечный разрез опор­ного подшипника: / — корпус, 2 —труба (подвод масла), 3 — фланец, 4 — крышка, 5, 7 — верх­ний н нижний вкладыши, 6 — планки, 8 — колодка, 9— установочная про­кладка, /0 —шейка ротора, // — кар­тер

 

Рис. 16. Опорный подшип­ник со сферическими вкладышами:

1, 4 — обоймы, 2, 3 — нижний и верхний вкладыши, 5 —"подвод масла, в — сферическая поверх­ность, 7 —канал подвода масла от аварийного бачка

В этом случае наружную поверхность нижнего 2 и верхнего 3 вкладышей, соединенных между собой болтами, обтачивают по сфере радиусом R. Аналогично обрабатывают внутреннюю поверх­ность также соединенных между собой болтами верхней 4 и ниж­ней 1 половинок обоймы. Детали обрабатываются так, чтобы центр сферы радиусом R находился точно на оси вращения ротора. Сопрягающиеся сферические поверхности обойм и вкладышей смазываются маслом, поступающим в каналы 5 и 7. Основным назначением канала 5 является подвод масла в подшипник. Канал 7 заполняется маслом из аварийного бачка. Обоймы 4 ъ 1 крепятся в корпусе подшипника неподвижно, а нижний и верхний вкладыши могут поворачиваться относительно точки О при изме­нении положения ротора относительно подшипника.

В настоящее время в опорных подшипниках почти не применяют круговую расточку (см. рис. 14), так как при этом велики рас­ходы масла, возникает низкочастотная вибрация ротора и замет­ное смещение вала в работающем подшипнике по отношению к неработающему.

Другие формы расточки опорных подшипников позволяют из­бавиться от тех или иных недостатков. На рис. 17, а—в показаны круговая расточка со смещением верхнего вкладыша относительно нижнего; овальная и трехклиновая (по числу масляных «клинь­ев», возникающих при работе подшипника).

 

Рис. 17. Опорные подшипники: а — с круговой расточкой со смещением верхней половины относительно ниж­ней, б, в — с овальной и трехклиновой расточкой, г — с. качающимися сегмен­тами, /, 3 — верхний и нижний вкла­дыши, 2 — сегменты; Oi O2 — оси верх­него и нижнего вкладышей, RB — ра­диус вала, R, — радиусы расточек вкла­дышей

Используются также подшипники с качающимися сегментами (рис. 17, г), на которые опираются шейки ротора, сегменты 2 в свою очередь опираются на поверхность внутренней расточки верхнего / и нижнего 3 вкладышей. При вращении ротора они самоустанавливаются так, что давление в масляном клине компен­сирует ту часть ротора, которую воспри­нимает данный сегмент.

На рис. 18 показана схема работы подшипника с качающимися сегментами. Сегменты 1 устанавливаются под неко­торым углом к поверхности вала 5. Мас­ло увлекается силами трения о поверх­ность вращающегося вала в зазор между сегментами и валом. Давление в масля­ном клине 3 повышается и препятствует смещению ротора вниз.

Как уже отмечалось, кроме опорных применяются упорные подшипники, наз­начение которых препятствовать смеще­нию ротора относительно корпуса вдоль оси вращения под действием осевого усилия.

Рис. 18. Схема работы опор- ноге подшипника с качаю­щимися сегментами: / — сегменты, 2 — шейка рото­ра, 3 —масляный клин (распре­деление давления), 4 — направ­ление вращения ротора, 5 — вал

Сегментный упорный подшипник (рис. 19) имеет. корпус, состоящий из верхней 8 и нижней Г половин, соединенных друг с другом по горизонтальному разъему. Внутри на корпус опираются упорные колодки 2. На валу ротора выточен упорный диск -(гребень) 6. Осевое усилие с вала 3 передается через упор­ный диск 6 колодкам 2, а через них — верхней половине 8 корпуса

подшипника.

Полость, в которой расположены упорные колодки 2, заполне­на маслом, поступающим вдоль поверхности вала. Нагретое мас­ло удаляется из подшипника через отверстия 5. Упорные колодки

А-А - работают по тому же принципу, что и сегменты трехклинового подшипника.

Рис. 19. Сегментный упорный подшипник: 1,8 — нижняя и верхняя половины корпуса, 2, 4 — упор­ные и установочные колодки, 3 — вал, 5 — отверстия для выхода масла, 6 — упорный диск (гребень), 7— места опирания колодок

Масляный клин создается между упорными колодка­ми 2 и поверхностью упорного диска 6. Давление, возникающее в масляном клине, позволяет компенсировать осевое усилие.

г г

1 2.

 

 

      У, \ f ) \ ^   \
У/////, V   ч
  9 «'■  

Рис. 20. Виды опирания колодок:

а — на ребро, б — на штифт, в — на плоские пружины,

г — на рычажную систему; t — колодка, 2 — упорный

диск, 3 — ребро, 4 — корпус подшипника, 5 — штифт, 6 —

пружина, 7 — пята, 8 — опора, 9 — рычаг

С противоположной стороны упорного диска расположены уста­новочные колодки 4

Осевой разбег (перемещение) ротора при работе не должен превышать 0,3—0,5 мм. При сборке, когда в подшипнике нет мас­ла, разбег ротора заметно больше, так как упорный диск упира­ется непосредственно в упорные колодки без масляного клина.

Наиболее широко распространено опирание упорных колодок на ребро и на штифты (рис. 20, а, б). В этих случаях, для равно­мерной загрузки упорных колодок необходимо точно выдерживать размер а. Чтобы добиться равномерного распределения усилий по упорным колодкам без точной подгонки, применяют различные способы опирания упорных колодок на корпус подшипника, на­пример через плоские пружины' и рычажную систему (рис. 20, в, г). Оба способа позволяют автоматически перераспределить на­грузки на колодки до полного выравнивания.

Упорные поверхности упорных колодок заливают баббитом.

 





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 2595 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2296 - | 2176 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.