Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Смеси идеальных газов




Все зависимости, полученные выше для идеальных газов, справедливы и для их смесей, если в них подставлять газо­вую постоянную, молекулярную массу и теплоемкость смеси.

Закон Дальтона. В инженерной прак­тике часто приходится иметь дело с газо­образными веществами, близкими по свойствам к идеальным газам и пред­ставляющими собой механическую смесь отдельных компонентов различных газов, химически не реагирующих между собой. Это так называемые газовые сме­си. В качестве примера можно назвать продукты сгорания топлива в двигателях внутреннего сгорания, топках печей и па­ровых котлов, влажный воздух в сушиль­ных установках и т. п.

Основным законом, определяющим поведение газовой смеси, является закон Дальтона: полное давление смеси иде­альных газов равно сумме парциальных давлений всех входящих в нее компо­нентов:

Парциальное давление pi — давление, которое имел бы газ, если бы он один при той же температуре занимал весь объем смеси.

Способы задания смеси. Состав га­зовой смеси может быть задан массовы­ми, объемными или мольными долями.

Массовой долей называется отношение массы отдельного компонента Мi, к массе смеси М:

.

Очевидно, что и .

Массовые доли часто задаются в процентах. Например, для сухого воздуха ; .

Объемная доля представляет собой отношение приведенного объема газа V, к полному объему смеси V: .

Приведенным называется объем, который занимал бы компонент газа, ес­ли бы его давление и температура равня­лись давлению и температуре смеси.

Для вычисления приведенного объема запишем два уравнения состоя­ния i -го компонента:

; (2.1)

.

Первое уравнение относится к состоянию компонента газа в Смеси, когда он имеет парциальное давление pi и занимает пол­ный объем смеси, а второе уравнение — к приведенному состоянию, когда давле­ние и температура компонента равны, как и для смеси, р и Т. Из уравнений следует, что

. (2.2)

Просуммировав соотношение (2.2) для всех компонентов смеси, получим с учетом закона Дальтона ,откуда . Объемные доли также часто задаются в процентах. Для воз­духа , .

Иногда бывает удобнее задать со­став смеси мольными долями. Моль­ной долей называется отношение количества молей Ni рассматриваемого компонента к общему количеству молей смеси N.

Пусть газовая смесь состоит из N1 молей первого компонента, N2 молей вто­рого компонента и т. д. Число молей смеси , а мольная доля компонента будет равна .

В соответствии с законом Авогадро объемы моля любого газа при одинако­вых р и Т, в частности при температуре и давлении смеси, в идеально газовом состоянии одинаковы. Поэтому приве­денный объем любого компонента может быть вычислен как произведение объема моля на число молей этого компо­нента, т. е. а объем смеси — по формуле . Тогда , и, следовательно, задание смесильных газов мольными долями равно заданию ее объемными долями.

Газовая постоянная смеси газов. Просуммировавуравнения (2.1) для всех компонен­тов смеси, получим . Учитывая , можно записать

, (2.3)

где

. (2.4)

Из уравнения (2.3) следует, что смесь идеальных газов также подчиняется уравнению Клапейрона. Поскольку то из (2.4) следует, что газовая постоянная смеси [Дж/(кг-К)] имеет вид

(2.5)

Кажущаяся молекулярная масса смеси. Выразим формально газовую постоянную смеси R, введя кажущуюся окулярную массу смеси : (2.6)

Сравнивая правые части соотношений (2.5) и (2.6), найдем

.

Изопределения массовых долей следует, что

Просуммировав это соотношение для всех компонентов и учитывая, что , получим выражение для кажущейся молекулярной и массы смеси, заданной объемными долями:

. (2.7)

Соотношение между объемными и массо­выми долями. Учитывая (2.7), получаем .

Поскольку , то

Разделив числитель и знаменатель этой формулы на массу смеси М, получим

.

Аналитическое выражение первого закона термодинамики

Первый закон термодинамики пред­ставляет собой частный случай всеобще­го закона сохранения и превращения энергии применительно к тепловым явле­ниям. В соответствии с уравнением Эйн­штейна надо рассматривать единый закон сохранения и превращения массы и энергии. Однако в технической термодинамике мы имеем дело со столь малыми скоростями объекта, что дефект массы равен нулю, и поэтому закон со­хранения энергии можно рассматривать независимо.

Закон сохранения и превращения энергии является фундаментальным за­коном природы, который получен на ос­нове обобщения огромного количества экспериментальных данных и применим ко всем явлениям природы. Он утвер­ждает, что энергия не исчезает и не воз­никает вновь, она лишь переходит из одной формы в другую, причем убыль энергии одного вида дает эквивалентное количество энергии другого вида.

В числе первых ученых, утверждав­ших принцип сохранения материи и энер­гии, был наш соотечественник М. В. Ло­моносов (1711 — 1765 гг.).

Пусть некоторому рабочему телу с объемом V и массой М, имеющему тем­пературу Т и давление р, сообщается из­вне бесконечно малое количество тепло­ты . В результате подвода теплоты тело нагревается на dT и увеличивается в объеме на dV.

Повышение температуры тела свиде­тельствует об увеличении кинетической энергии его частиц. Увеличение объема тела приводит к изменению потенциаль­ной энергии частиц. В результате внут­ренняя энергия тела увеличивается на dU. Поскольку рабочее тело окружено средой, которая оказывает на него дав­ление, то при расширении оно произво­дит механическую работу против сил внешнего давления. Так как никаких других изменений в системе не происхо­дит, то по закону сохранения энергии

(2.8)

т. е. теплота, сообщаемая системе, идет на приращение ее внутренней энергии и на совершение внешней работы.

Полученное уравнение является ма­тематическим выражением первого зако­на термодинамики. Каждый из трех чле­нов этого соотношения может быть поло­жительным, отрицательным или равным нулю. Рассмотрим некоторые частные случаи.

1. — теплообмен системы с ок­ружающей средой отсутствует, т. е. теп­лота к системе не подводится и от нее не отводится. Процесс без теплообмена на­зывается адиабатным. Для него уравнение (2.8) принимает вид:

.

Следовательно, работа расширения, совершаемая системой в адиабатном процессе, равна уменьшению внутренней энергии данной системы. При адиабат­ном сжатии рабочего тела затрачивае­мая извне работа целиком идет на увели­чение внутренней энергии системы.

2. — при этом объем тела не изменяется, dV =0. Такой процесс на­зывается изохорным, для него

,

т. е. количество теплоты, подведенное к системе при постоянном объеме, равно увеличению внутренней энергии данной системы.

3. dU=0 – внутренняя энергия системы не изменяется и

,

т.е. сообщаемая системе теплота пре­вращается в эквивалентную ей внешнюю работу.

Для системы, содержащей 1 кг рабо­чего тела

. (2.9)

Проинтегрировав уравнения (2.8) и (2.9) для некоторого процесса, полу­чим выражение первого закона термоди­намики в интегральной форме:

; .


ЛЕКЦИЯ 3

Внутренняя энергия

Внутренняя энергия системы включа­ет в себя:

кинетическую энергию поступатель­ного, вращательного и колебательного движения частиц;

потенциальную энергию взаимодей­ствия частиц;

энергию электронных оболочек атомов;

внутриядерную энергию.

В большинстве теплоэнергетических процессов две последние составляющие остаются неизменными. Поэтому в даль­нейшем под внутренней энер­гией будем понимать энергию хаотиче­ского движения молекул и атомов, вклю­чающую энергию поступательного, вра­щательного и колебательного движений как молекулярного, так и внутримолекулярного, а также потенциальную энергию сил взаимодействия между молекулами.

Кинетическая энергия молекул явля­ется функцией температуры, значение потенциальной энергии зависит от сред­него расстояния между молекулами и, следовательно, от занимаемого газом объема V, т. е. является функцией V. По­этому внутренняя энергия U есть функ­ция состояния тела.

Для сложной системы она определя­ется суммой энергий отдельных частей, т. е. обладает свойством аддитивности. Величина и=U/М, называемая удельной внутренней энер­гией (Дж/кг), представляет собой внутреннюю энергию единицы массы ве­щества.

В дальнейшем для краткости будем называть величину и просто внутренней энергией. Поскольку внутренняя энергия есть функция состояния тела, то она мо­жет быть представлена в виде функции двух любых независимых параметров, определяющих это состояние:

; ; .

Ее изменение в термодинамическом процессе не зависит от характера процесса и определяется только началь­ным и конечным состояниями тела:

;

— значение внутренней энергии в начальном состоянии, а — в конечном. Математически это означает, что бесконечно малое измене­ние внутренней энергии du есть полный дифференциал и; если выразить внутрен­нюю энергию в виде функции удельного объема и температуры, то

Внутренняя энергия идеального газа, в котором отсутствуют силы взаимодей­ствия между молекулами, не зависит от объема газа или давления , а определяется только его температурой, поэтому производная от внутренней энергии идеального газа по температуре есть полная производная:

Для задач технической термодинами­ки важно не абсолютное значение внут­ренней энергии, а ее изменение в различ­ных термодинамических процессах. По­этому начало отсчета внутренней энер­гии может быть выбрано произвольно. Например, в соответствии с международ­ным соглашением для воды за нуль при­нимается значение внутренней энергии при температуре 0,01 °С и давление 610,8 Па, а для идеальных газов — при 0 °С вне зависимости от давления.

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 874 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2254 - | 2184 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.