Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Двухобмоточный трансформатор




Лекция № 5

 

Параметры схемы замещения трансформаторов

 

План.

 

1. Общие сведения.

2. Двухобмоточный трансформатор.

3. Трехобмоточный трансформатор.

4. Двухобмоточный трансформатор с расщепленной обмоткой низкого напряжения.

5. Автотрансформатор.

 

Общие сведения

 

На электростанциях и подстанциях устанавливаются трехфазные и однофаз-ные, двухобмоточные и трехобмоточные силовые трансформаторы и автотранс-форматоры, и силовые однофазные и трехфазные трансформаторы с расщеп-ленной обмоткой низшего напряжения.

В аббревиатуре трансформатора последовательно (слева направо) приво-дится следующая информация:

· вид устройства (А – автотрансформатор, без обозначения – трансфор-матор);

· количество фаз (О – однофазный, Т –трехфазный);

· наличие расщепленной обмотки низшего напряжения – Р;

· система охлаждения (М – естественная циркуляция масла и воздуха, Д – принудительная циркуляция воздуха и естественная циркуляция масла, МЦ – естественная циркуляция воздуха и принудительная циркуляция масла, ДЦ – принудительная циркуляция воздуха и масла и др);

· количество обмоток (без обозначения – двухобмоточный, Т – трехобмо-точный);

· наличие устройства регулирования напряжения под нагрузкой (РПН);

· исполнение (З – защитное, Г – грозоупорное, У – усовершенствованное, Л – с литой изоляцией);

· специфическая область применения (С – для систем собственных нужд электростанций, Ж – для электрификации железных дорог);

· номинальная мощность в кВ∙А,

· класс напряжения обмоток (напряжения сети, к которой подключается трансформатор) в кВ.

 

Двухобмоточный трансформатор

 

На электрических схемах двухобмоточный трансформатор представляется следующим образом (рис. 5.1):

В обмотках указывается схемы соединения обмоток (звезда, звезда с нулем, треугольник) и режим работы нейтрали:

· звезда – с изолированной нейт- ралью;

· звезда с нулем – имеется соеди-нение нейтрали с землей.

В соответствии с принятой систе-мой обозначений аббревиатура транс-форматора ТДН-10000/110/10 расшиф-ровывается: трансформатор трехфазный, двухобмоточный с принудительной циркуляцией воздуха и естественной циркуляцией масла и системой регулирования напряжения под нагрузкой. Номинальная мощность – 10000 кВ∙А, класс напряжения обмотки высшего напряжения – 110 кВ, низшего напряжения – 10 кВ.

В практических расчетах двухобмоточный трансформатор чаще всего представляется Г-образной схемой замещения (рис. 5.2).

 

Активное и реактив-ное сопротивления трас-форматора (продольная ветвь) представляют собой сумму активных и реак-тивных сопротивлений об-мотки высшего напряже-ния и приведенной к ней обмотки низшего напря-жения:

 

 

 

Поперечная ветвь схемы замещения представлена активной G т и реактивной В т проводимостями. Проводимости обычно подключают со стороны первичной обмотки: для повышающих трансформаторов – со стороны обмотки низшего напряжения, для понижающих – со стороны обмотки высшего напряжения.

В такой схеме замещения отсутствует трансформация, то есть отсутствует идеальный трансформатор. Поэтому в расчетах вторичное напряжение оказывается приведенным к напряжению первичной обмотки.

Активная проводимость обусловлена потерями активной мощности в стали трансформатора на перемагничивание и вихревые токи, реактивная проводимость – намагничивающей мощностью. В расчетах режимов электрической сети проводимости заменяются нагрузкой, равной потерям холостого хода.

Параметры схемы замещения трансформатора определяются из двух опытов – холостого хода и короткого замыкания. В опытах определяют следующие величины, которые указывают в паспортных данных трансформатора:

· потери активной мощности в режиме холостого хода в кВт;

· потери активной мощности в режиме короткого замыкания в кВт;

· напряжение короткого замыкания U к, в %;

· ток холостого хода I х, в %.

Величины активного и реактивного сопротивлений находят из опыта короткого замыкания (рис. 5.3). Опыт выполняют следующим образом: обмотку низшего напряжения закорачивают, а на обмотку высшего напряжения подают такое напряжение (U к), чтобы в обеих протекал номинальный ток.

Так как напряжение короткого замыкания намного меньше номинального напряжения трансформатора, то потери активной мощности в проводимости практически равны нулю. Таким образом, все потери активной мощности в режиме короткого замыкания идут на нагрев обмоток. Математически это можно записать:

 

(5.1)

 

Если в формуле (5.1) значение тока записать через мощность и номинальное напряжение обмотки высшего напряжения

 

,

 

то получим выражение для расчета активного сопротивления двухобмоточного трансформатора:

 

Напряжение короткого замыкания U к складывается из падения напряжения на активном U к а и реактивном U к р сопротивлениях. Выразим их в процентах от номинального напряжения.

Падение напряжения в активном сопротивлении трансформатора:

 

Подставим в выражение значение R т. Получим:

 

 

Таким образом, величина падения напряжения в активном сопротивлении, выраженная в процентах, пропорциональна потерям активной мощности в режиме короткого замыкания.

Выражение для падения напряжения в реактивном сопротивлении в процентах выглядит следующим образом

 

(5.2)

 

Из него можем найти величину реактивного сопротивления трансформатора:

 

 

Умножим и разделим полученное выражение на U в ном:

 

 

В современных трансформаторах активное сопротивление гораздо больше реактивного. Поэтому в практических расчетах можно принять, что U к рU к. Тогда, формула для расчета индуктивного сопротивления трансформатора имеет вид:

 

 

Трансформаторы имеют устройства регулирования напряжения (РПН или ПБВ), которые позволяют менять коэффициенты трансформации. Поэтому величина U к (следовательно, и величина индуктивного сопротивления) зависит от ответвления устройств РПН или ПБВ. В расчетах установившихся режимов этой зависимостью пренебрегают. Ее учитывают при расчете токов короткого замыкания при выборе устройств автоматики и релейной защиты.

Проводимости ветви намагничивания определяются из опыта холостого хода (рис. 5.4), который выполняется при номинальном напряжении. В этом режиме трансформатор потребляет мощность, равную потерям холостого хода:

 

.

 

Потери активной мощности пропорциональны активной проводимости трансфор

 

Отсюда может быть определена величина активной проводимости:

 

 

Потери реактивной мощности пропорциональны реактивной проводимости трансформатора:

 

 

Следовательно, величина реактивной проводимости трансформатора равна:

 

 

Величина потерь реактивной мощности пропорциональна току намагничивания

 

(5.3)

 

где U ном ф – фазное номинальное напряжение трансформатора.

Величина тока холостого хода складывается из тока намагничивания I μ и тока в стали I стали:

 

I х = I μ + I стали.

 

Так как величина тока в стали составляет около 10 % от тока намагничивания, то выражение (5.3) можно записать:

 

 

В паспортных данных величина тока холостого хода приводится в процентах от номинального тока. Поэтому мы можем записать:

 

 

С учетом полученного выражения, формула для расчета реактивной проводимости имеет вид:

 

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 8186 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2340 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.