Период: рубеж XIX-XX веков.
- Открытия:
- сложная структура атома
- явление радиоактивности
- дискретность характера электромагнитного излучения
- и др.
Итог: была подорвана важнейшая предпосылка механистической картины мира – убежденность в том, что с помощью простых сил, действующих между неизменными объектами, можно объяснить все явления природы.
Существуют различные мнения о том, как изменяются представления о мире в истории человечества. Поскольку наука появилась сравнительно недавно, она может давать дополнительные сведения о мире. Однако некоторые философы считают, что со временем научная картина мира должна полностью вытеснить все другие.
По классификации Конта, научная картина мира олицетворяет собой третью, позитивную (после теологической и метафизической) фазу последовательного фазиса философской мысли в истории всего человечества.
Тема 2: История становления синергетики. Вопросы:1. Космогонические и мифологические представления о мироупорядочении.2. Тектология А. Богданова.3. Теория катастроф Р. Тома.4. Синергетика Г. Хакена.5. Теория диссипативных систем И. Пригожина.6. Истоки синергетических идей в социогуманитарном знании (Рут Бенедикт).1. Стратегия деятельности с саморазвивающимися системами неожиданным образом порождает перекличку между культурой западной цивилизации и восточными культурами. И это очень важно, если иметь в виду проблемы диалога культур как фактора выработки новых ценностей и новых стратегий цивилизационного развития. Долгое время наука и технология в новоевропейской культурной традиции развивались так, что они согласовывались только с западной системой ценностей. Теперь выясняется, что современный тип научно-технологического развития можно согласовать и с альтернативными и, казалось бы, чуждыми западным ценностям мировоззренческими идеями восточных культур.
Здесь выделим три основных момента.
- Во-первых, восточные культуры всегда исходили из того, что природный мир, в котором живет человек, это — живой организм, а не обезличенное неорганическое поле, которое можно перепахивать и переделывать. Долгое время новоевропейская наука относилась к этим идеям как к пережиткам мифа и мистики. Но после развития современных представлений о биосфере как глобальной экосистеме выяснилось, что непосредственно окружающая нас среда действительно представляет собой целостный организм, в который включен человек. Эти представления уже начинают в определенном смысле резонировать с организмическими образами природы, свойственным и древним культурам.
- Во-вторых, выясняется, что установка на активное силовое преобразование объектов, характерное для новоевропейской культуры не всегда является эффективной. При освоении сложных саморазвивающихся систем простое увеличение внешнего силового давления на систему может воспроизводить один и тот же набор структур и не порождает новых структур и уровней организации. Но в состоянии неустойчивости, в точках бифуркации часто небольшое воздействие — укол в определенном пространственно-временном локусе – способно порождать (в силу кооперативных эффектов) новые структуры и уровни организации. Этот способ воздействия напоминает стратегии ненасилия, которые были развиты в индийской культурной традиции, а также действия в соответствии с древнекитайским принципом “у-вэй ” ( минимального действия, основанного на чувстве ритма природных процессов).
- В-третьих, в стратегиях деятельности со сложными, человекоразмерными системами возникает новый тип интеграции истины и, нравственности, целе-рационального и ценностно-рационального действия. В западной культурной традиции рациональное обоснование полагалось основой этики. Когда Сократа спрашивали, как жить добродетельно, он отвечал, что сначала надо понять, что такое добродетель. Иначе говоря, истинное знание о добродетели задает ориентиры нравственного поведения.
Принципиально иной подход характерен для восточной культурной традиции. Там истина не отделялась от нравственности, и нравственное совершенствование полагалось условием и основанием для постижения истины. Один и тот же иероглиф “дао” обозначал в древнекитайской культуре закон, истину и нравственный жизненный путь. Когда ученики Конфуция спрашивали у него, как понимать “дао”, то он каждому давал разные ответы, поскольку каждый из его учеников прошел разный путь нравственного совершенствования.
Новый тип рациональности, который сегодня утверждается в науке и технологической деятельности со сложными развивающимися, человекоразмерными системами, резонирует с древневосточными представлениями о связи истины и нравственности. Это, конечно, не значит, что тем самым принижается ценность рациональности, которая всегда имела приоритетный статус в западной культуре. Тип научной рациональности сегодня изменяется, но сама рациональность остается необходимой для понимания и диалога различных культур, который невозможен вне рефлексивного отношения к их базисным ценностям. Рациональное понимание делает возможной позицию равноправия всех «систем отсчета» (базовых ценностей) и открытости различных культурных миров для диалога. В этом смысле можно сказать, что развитые в лоне западной культурной традиции представления об особой ценности научной рациональности, остаются важнейшей опорой в поиске новых мировоззренческих ориентиров. Вместе с тем сама рациональность обретает новые модификации в современном развитии. Сегодня во многом теряет смысл ее жесткое противопоставление многим идеям традиционных культур.
Таким образом, на переднем крае научно-технологического развития, в связи с освоением сложных саморазвивающихся систем возникают точки роста новых ценностей и мировоззренческих ориентаций, которые открывают новые перспективы для диалога культур. А этот диалог, как сегодня считают многие, необходим для выработки новых стратегий жизнедеятельности глобализирующегося человечества, для выхода из глобальных кризисов, порожденных современной техногенной цивилизацией.2. Тектология Богданова. А. А. Богданов понимал тектологию как науку, объединяющую в себе организационные методы всех наук. Критикуя ограниченность мышления, воспитанного на специализации, Александр Александрович осуществил попытку заложить универсальные, обобщённые основы науки, объединяющей организационный опыт человечества. Организационную точку зрения он рассматривал как призванную служить средством решения практических задач. А. А. Богданов для повышения результативности решения конкретных, практических задач, предполагает обязательное сведение процесса решения задач к выявлению абстрактной составляющей. Решение абстрактной, облегчённой задачи при переводе на конкретный уровень (при детализации) позволяет получить конкретное решение: «Эта точка зрения всегда шире и потому способна, по крайней мере, в некоторых, а может быть, и во всех случаях приводить к результатам более полным или более точным. Опыт всех наук показывает, что решение частных вопросов обычно достигается лишь тогда, когда их предварительно преобразуют в обобщённые формы». Этим методом и пользуется А. А. Богданов при постановке и решении тектологических задач. Задача же тектологии, по Богданову, как науки эмпирической, — систематизировать организационный опыт. Тектология должна выяснить, какие способы организации наблюдаются в природе и в человеческой деятельности; затем — обобщить и систематизировать эти способы; далее — объяснить их, то есть выработать абстрактные схемы их тенденций и закономерностей, определить направления развития организационных методов и их роль в мировом процессе. По мнению А. А. Богданова, когда в процессе обобщения, абстрагирования выяснены общие законы, то создаётся твёрдая опора для планомерной организационной деятельности — практической и теоретической. Полный расцвет тектологии будет выражаться в сознательном господстве людей как над природой внешней, так и над природой социальной. Успех тектологических обобщений и выводов, по мнению А. А. Богданова, зависит, прежде всего, от правильных методов и способов организации тектологического анализа.
4. Возникновение синергетики как самостоятельного направления научных исследований датируется 1969 годом. Именно тогда немецкий физик Герман Хакен стал использовать термин "синергетика" в своем курсе по теории лазерного излучения, который он читал в университете города Штутгарт. Новый термин был образован им от греческого выражения synergeia, что означает сотрудничество, согласованное действие, соучастие.
Закономерности, которые Хакен открыл в физике микромира, удивительно напоминают функционирование и развитие сложных экономических систем. Но прежде предоставим слово Хакену.
"В лазере большое число атомов погружены в активную среду, например, в такой кристалл, как рубин. После накачки извне атомы возбуждаются и могут испускать отдельные цуги световых волн. Таким образом, каждый атом испускает сигнал, то есть создает информацию, переносимую световым полем. В полости лазера испущенные цуги волн могут столкнуться с другим возбужденным атомом, что приведет к усилению испускаемой им волны... Так как отдельные атомы могут испускать световые волны независимо друг от друга и так как эти волны могут затем усиливаться другими возбужденными атомами, возникает суперпозиция некоррелированных, хотя и усиленных цугов волн, и мы наблюдаем совершенно нерегулярную картину.
Но когда амплитуда сигнала становится достаточно большой, начинается совершенно новый процесс. Атомы начинают когерентно осциллировать, и само поле становится когерентным, то есть оно не состоит более из отдельных некоррелированных цугов волн, а превращается в одну практически бесконечно длинную синусоиду.
Перед нами типичный пример самоорганизации: временная структура когерентной волны возникает без вмешательства извне. На смену хаосу приходит порядок. Подробная математическая теория показывает, что возникающая когерентная световая волна служит своего рода параметром порядка, вынуждающим атомы осциллировать когерентно, или, иначе говоря, подчиняет себе атомы".
В приведенном отрывке прежде всего обращает на себя внимание понятие - самоорганизация. Именно оно является ключевым для понимания сущности синергетики. Синергетику и определяют как науку о самоорганизации или, более развернуто, о самопроизвольном возникновении и самоподдержании упорядоченных временных и пространственных структур в открытых нелинейных системах различной природы.
В описании процесса образования когерентной световой волны Хакен использует целый ряд других основополагающих понятий синергетики. "Накачка энергии" означает, что рассматриваемая система является открытой, то есть, имеет интенсивный приток энергии извне, а также оттоки энергии. Возникающая временная или пространственная структура формируется в активной среде и представляет собой выявление одного из потенциально присущих ей дискретных состояний. Система реагирует нелинейно, то есть переход от неорганизованного поведения атомов к слиянию их излучения в когерентную световую волну происходит не плавным путем, в линейной пропорции к увеличению энергии, а скачкообразно - в момент, когда приток энергии превысит определенный барьер. Разрозненное и неупорядоченное поведение отдельных атомов соответствует хаотическому состоянию системы, макроскопическому хаосу, из которого путем фазового перехода рождается порядок. Для всякой системы можно определить параметры порядка, позволяющие описать ее сложное поведение достаточно простым образом, а также выбрать определенные контролирующие параметры, при изменении которых существенно меняется макроскопическое поведение системы. Параметры порядка подчиняют поведение отдельных элементов системы - в этом выражается введенный Хакеном принцип подчинения.
Как видим, известное нам второе начало термодинамики, говорящее о росте беспорядка (энтропии) в замкнутых системах, теряет свою силу для открытых нелинейных систем, изучаемых синергетикой. Локализованные, быстро развивающиеся структуры существуют за счет возрастающей хаотизации среды, на основе производства в ней энтропии. Структуры горения как бы интенсивно "выжигают" среду вокруг себя. И организация (порядок), и дезорганизация (энтропия) увеличиваются одновременно. Но на пике обострения процесса разогрева и "подбирания" границ тепла структура становится чрезвычайно шаткой, чувствительной к малейшим флуктуациям, случайным изменениям хода процесса. Они способны инициировать распад сложной структуры или же вывести на иной, противоположный режим - режим спада температуры и расползания тепла.
5. Важные результаты, касающиеся спонтанного возникновения упорядоченных структур, были получены к началу 70-х годов и в химии. Они связаны в первую очередь с исследованиями, проводимыми в Свободном университете Брюсселя под руководством Ильи Пригожина - бельгийского ученого, получившего в 1977 году за свои работы в области неравновесной термодинамики Нобелевскую премию. "В различных экспериментальных условиях, - пишут Илья Пригожин и его соавтор Изабелла Стенгерс, - у одной и той же системы могут наблюдаться различные формы самоорганизации - химические часы, устойчивая пространственная дифференциация или образование волн химической активности на макроскопических расстояниях".
Химические часы - пожалуй, самый яркий феномен самоорганизации химических процессов, открытый в начале 50-х годов российскими учеными Б.П.Белоусовьм и А.М.Жаботинским. Структура, которая здесь образуется, представляет собой не пространственную, а временную структуру - колебание с регулярной периодичностью. Для теоретического описания реакции Белоусова-Жаботинского Пригожин со своими сотрудниками разработал специальную модель, названную брюсселятором. Она выглядит так. Имеются вещества, вступающие между собой в химическую реакцию. Концентрацию только одного из них - "управляющего" вещества - плавно увеличивают. Как только концентрация переходит критический порог (при прочих равных параметрах), прежнее стационарное состояние химической системы становится неустойчивым и концентрации двух других реагирующих веществ начинают колебаться с отчетливо выраженной периодичностью. Колебания происходят вокруг некоторого нестабильного фокуса и выходят на предельный цикл, то есть устанавливается устойчивое периодическое движение.
6. В теории самоорганизации проводится четкое различие между стационарными, "застывшими" структурами, такими, как решетки кристаллов, и относительно устойчивыми структурами, вызываемыми к жизни из первоначально хаотического состояния путем интенсивного изменения по некоторому ведущему параметру - будь то накачкой энергии в физическом эффекте лазерного излучения, увеличением концентрации вещества в описанном выше химическом эффекте или, с самой общей точки зрения, притоком информации в среду, что также охватывается синергетическими моделями. Первый тип структур - это, можно сказать, "тупики эволюции". Для равновесных стационарных структур малое возмущение "сваливается" на ту же самую структуру. Второй тип - это структуры, способные самопроизвольно возникать и развиваться в активных, рассеивающих (диссипативных) средах в состояниях, далеких от термодинамического равновесия. Для обозначения такого типа структур Пригожин предложил использовать понятие диссипативной структуры.
Исследования явлений самоорганизации в химических процессах привели Пригожина к созданию собственной обобщенной теории самоорганизации, далеко выходящей за пределы химии. Он называет ее по-разному: нелинейной неравновесной термодинамикой, наукой о сложном, теорией перехода от хаоса к порядку, но чаще всего теорией диссипативных структур. Пригожин предпочитает не пользоваться термином "синергетика", хотя по своему внутреннему содержанию его исследования, бесспорно, относятся к синергетической теории эволюции и самоорганизации сложных систем.
Таким образом, во второй половины XX века получили усиленное развития научные направления, пытающие понять мир в его целостности, усмотреть в искусственно рассеченных сферах нечто существенно общее. Синергетика в наиболее последовательной форме отвечает на этот вызов времени.
К сущности синергетики относится универсальный характер раскрываемых ею закономерностей, а значит, по необходимости междисциплинарный характер проводимых в ее рамках исследований. На первое место она ставит общность процессов эволюции и самоорганизации, имеющих место в физических, химических, биологических, социальных и иных системах. Указание же на специфику, несхожесть этих систем рассматривается скорее в качестве уточняющей, корректирующей поправки, выносится за скобки. При этом задача синергетики - не просто уловить внешние аналогии, а установить внутренние изоморфизмы поведения таких систем.
Синергетика равным образом предполагает как восхождение от конкретных экспериментальных данных к теоретическим и междисциплинарным обобщениям, так и обратный процесс - прикладное использование теоретических представлений и разработанных моделей в различных дисциплинах и сферах практической деятельности.
Соответственно в синергетике можно выделить два направления - синергетику теоретическую и прикладную, хотя такое членение весьма условно. Ученые, работающие над какими-либо конкретными задачами в своей области, часто предлагают синергетическому сообществу свежие идеи и гипотезы общего порядка, родившиеся в ходе решения таких задач. А предложенные идеи и гипотезы часто дают неожиданный импульс для исследований в совершенно иной дисциплинарной области, в результате чего в научном сообществе происходит постоянный конструктивный обмен идеями.
Тема 3: Теоретико-методологические основы синергетики. 1. Синергетика – наука о сложных самоорганизующихся системах Принципы системного подхода, их место и роль в синергетике. Синергетика как – универсальная теория самоорганизации систем.2.Основные принципы и понятия теории самоорганизации и синергетического подхода (порядок, хаос, открытые системы, неравновесность, флуктуация, бифуркация, когерентность, нелинейность, диссипативная структура, нелинейное мышление, неопределенность и др.).3.Общенаучное значение синергетического подхода.
1. Теория самоорганизации или синергетика сегодня представляется одним из наиболее популярных и перспективных междисциплинарных подходов. Термин "синергетика" (synergeia (греч.) - совместное действие, сотрудничество) был предложен в начале 70-х годов немецким физиком из Штутгарта Г. Хакеном и имеет два смысла: с одной стороны кооперативное действие элементов сложной системы; с другой - сотрудничество учёных разных областей знания. Большинство учебников, правда, обходят стороной неологизм Хакена, используя вместо него термины "Х-наука", "нелинейная термодинамика", "теория самоорганизации" или просто "наука о сложном".
Синергетика возникла на стыке различных научных школ. Это брюссельская школа И. Пригожина, рассматривающая самоорганизацию в физических и химических процессах; школа Г.Хакена, изучающая лазеры; советская школа В.И. Арнольда и Р.Тома, разрабатывающая математический аппарат для описания катострофических процессов, школа А.А. Самарского и С.П. Курдюмова, строящая теорию самоорганизации на основе вычислительного эксперимента; биофизическая школа М.В. Волькенштейна и Д.С. Чернявского и др..
Но это привело и к замечательному обратному эффекту - синергетика начала оказывать всё большее влияние на разные сферы деятельности и вызывать всё больший интерес. В отличие от традиционных областей научного знания, синергетику интересуют общие закономерности эволюции систем любой природы.
Абстрагируясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на обобщённом языке. Это позволяет синергетике делать достояние одной области науки доступным пониманию представителей совсем другой области. Сейчас этим подходом интересуются многие - от студентов до политиков, от менеджеров до активно работающих исследователей.
2. Энтропия
Без постороннего вмешательства всё старается вернуться к состоянию равновесия. На это обратил внимание в 1824 г. лейтенант французской армии Сади Карно, который позже сформулировал 1-ый закон термодинамики. Но основополагающей работой была книга немецкого физика Р. Клаузиуса " О движущей силе теплоты", в которой он сформулировал 1-ый и 2-ой законы термодинамики. Для характеристики теплового состояния системы понадобилась новая величина, Клазиус ввел термин "энтропия" (греч.-круговорот). Энтропия определяет состояние системы с точки зрения ее внутренней упорядоченности. Чем больше порядка, тем меньше энтропия.
В 1851г. английский физик В. Томсон (лорд Кельвин) уточнил положения Клазиуса формулировкой "Энтропия мира стремится к максимуму". Поскольку в изолированной системе максимум энтропии достигается в состоянии равновесия, то из формулировки Клаузиуса следовал вывод, что у Вселенной было начало и будет конец, когда все процессы прекратятся и наступит состояние равновесия. В рамках классической термодинамики верно то, что сдержать рост энтропии могут лишь обратимые процессы, следовательно, энтропия - показатель необратимости. (До Клазиуса рассматривали только обратимые системы). Разрушение порядка - процесс необратимый и без вмешательства извне порядок образоваться не может, следовательно, уменьшить энтропию можно только, приложив определённые усилия.
Сегодня мы знаем, что увеличение энтропии отнюдь не сводится к увеличению беспорядка, т.к. порядок на макроуровне вполне мирно уживается с хаосом на микроуровне. Таким образом, порядок тесно связан с беспорядком - один включает в себя другой. Учёные XIX века полагали, что всё детерминировано, и если что-то и происходит случайно, то это так кажется по незнанию (лапласовский детерминизм, который предполагает существование формулы, описывающей все системы и в них происходящие процессы). В конце XIX-н.XX века этот стиль мышления подтачивается теорией вероятности, тогда же обнаруживается противоречие между поведением живой и неживой материи, когда Ч. Дарвин выдвинул теорию биологической эволюции: в живой материи из простейших организмов постепенно возникают более сложные, т.е. идёт уменьшение энтропии (увеличение степени порядка). Получается, что в биологии нужно использовать дополнительно другие законы. Ситуация изменилась, когда в середине ХХ в. была высказана идея о том, что в состояниях, далёких от положения равновесия, у материи при определённых условиях появляется способность к самоорганизации. Сущность самоорганизации состоит в том, что частицы начинают участвовать в кооперативных движениях, образуются так называемые диссипативные структуры как во времени, так и в пространстве. С приближением к состоянию равновесия эта способность материи к самоорганизации ослабляется и, наконец, исчезает.
Рост энтропии при образовании диссипативных структур, как показал Э.
Шредингер, не противоречит второму началу термодинамики, т.к. живые биологические системы не являются замкнутыми и обмениваются веществом и энергией с окружающей средой. В живом организме энтропия уменьшается за счет локальной упорядоченности и её ухода в окружающую среду, но в системе в целом энтропия растет. Для появления самоорганизации в системе она должна быть:1) нелинейной, т.е. когда отклик системы непропорционален уровню воздействия на неё; 2) неравновесной - нестационарное состояние должно находиться далеко от равновесия; 3) иметь обратную связь; 4) стохастической, т.е. в системе есть случайные процессы.
Примерами самоорганизации могут служить: изменение численности популяций в системе хищник-жертва; лазеры, реакция Белоусова-Жаботинского и др.
Принципиальное значение этих явлений в том, что появляется возможность устранить противоречие в поведении энтропии для живой и неживой материи, объяснить возникновение живого из неживого. За расшифровку явления самоорганизации и образования диссипативных структур И. Пригожину была присуждена Нобелевская премия по химии (1977).
Прежде всего синергетика исходит из положения, что динамическая устойчивость процессов самоорганизации поддерживается благодаря циклической смены состояний. С точки зрения этого подхода, и живое, и неживое, и человек, и мир - всё подчиняется определенным "ритмам жизни". Этим же колебаниям подчиняются все общественные процессы.
Ключевые понятия теории синергетики - названная выше нелинейность, точка бифуркации, аттрактор, диссипативные процессы и фракталы. Точка бифуркации- это момент неустойчивости, когда система выбирает дальнейший путь эволюции., точка, в которой происходит катастрофа (термином "катастрофа" в теории самоорганизации называют качественные скачкообразные изменения, возникающие при плавном изменении внешних условий). Вблизи этой точки возрастает роль незначительных случайных возмущений - флуктуаций (временных отклонений от состояния равновесия), за счет чего может произойти переход системы от области притяжения одного аттрактора к другому (произойдет катастрофа). При этом синергетика принципиально исходит из того, что состояния хаоса не является чем-то изначально вредным и разрушительным, т.к. в это время система выбирает различные варианты самоорганизации и останавливается на оптимальном. Фракталами называются такие объекты, которые обладают свойством самоподобия. Это означает, что малый фрагмент структуры такого объекта подобен другому, более крупному фрагменту или даже структуре в целом
(подобно тому, как каждая монада у Лейбница отражает свойства мира в целом).
Термин «фрактал» (лат. «fractus»-фрагментированный) принадлежит БенуаМандельброту, который предложил по сути новую, неевклидову геометрию.Евклид свёл природу к точке, одномерной линии, двумерной плоскости и объемному телу. В результате компьютерное изображение гор при помощи евклидовой геометрии представляет устрашающую задачу, которая требует множества строк программного кода и большого количества обращений к датчику случайных чисел. С помощью же фрактальной геометрии гора может быть создана посредством всего лишь нескольких повторно применяемых кодов. Большинство природных форм и временных рядов наилучшим образом описываются фракталами.Типичными примерами природных фрактальных форм являются крона деревьев, рисунок молнии, кровеносная система у человека и т.д. Фрактальные временные ряды имеют статистическое самоподобие во времени.
Аттрактор (attractor) в переводе с английского означает "притягиватель"; в данном случае это точка или множество в фазовом пространстве, к которым притягиваются все траектории из некоторой окрестности аттрактора, называемой также областью, или бассейном, притяжения. Аттракторы – понятие, обозначающее активные устойчивые центры потенциальных путей эволюции системы, способные притягивать и организовывать окружающую среду.Математически аттракторы определяются как предельные значения решений дифференциальных уравнений. Соответствующий аппарат был разработан Анри Пуанкаре. С позиции термодинамики, аттрактор характеризует состояние динамического равновесия, то есть стационарный, установившийся режим развития системы, когда энтропия ее в течение времени значительно не меняется при непрекращающемся поступлении и диссипации энергии и вещества. Система, находящаяся в состоянии динамического равновесия (аттрактора), является типично диссипативной самоорганизующейся структурой. Аттракторы являются базисными фактами теории самоорганизации.
О.В. Митина и В.Ф. Петренко пишут: «Партии, как магнит "притягивая" к себе сторонников – индивидов, имеющих близкие ценностно-политические позиции (участвующих в работе партии или просто голосующих за нее на выборах), играют роль своеобразных аттракторов». Харизма, удачный имидж политического деятеля выступает также аттрактором политической жизни, представляющей те компоненты системы, которые собирают вокруг себя важные ее элементы, втягивая их в движение, борьбу за власть и придавая системе дополнительные импульсы нестабильности, неравновесности, делающие возможным перевод ее в иные состояния. Кроме того, в политической сфере аттракторами могут быть, к примеру, определенные идеи общественного переустройства страны, а также идеальные типы возможных образований в пространстве и времени, на которые выходят процессы общественной самоорганизации.
Состояние аттрактора описывается намного проще, чем хаотический, запутанный путь к нему. Самый простой тип аттрактора — неподвижная точка
(точечный аттрактор). Посложнее аттрактор типа предельный цикл (его движению соответствует периодическая траектория, или цикл). Знакомой всем системой с предельным циклом является сердце. В области политического анализа такие периодические аттракторы можно применить к описанию стабильных двухпартийных систем.
3. В 1963 году американский метеоролог из Массачусетского технологического института Эдвард Лоренц задался вопросом: почему стремительное совершенствование компьютеров не привело к воплощению в жизнь мечты метеорологов – достоверному среднесрочному (на 2-3 недели вперед) прогнозу погоды? Эдвард Лоренц предложил простейшую модель, состоящую из трех обыкновенных дифференциальных уравнений, описывающую конвекцию воздуха, просчитал ее на компьютере и получил поразительный результат. Этот результат – динамический хаос – есть сложное непериодическое движение, имеющее конечный горизонт прогноза, в детерминированных системах (то есть в таких, где будущее однозначно определяется прошлым).
В том же 1963 году Рэй Брэдбери опубликовал фантастический рассказ «И грянул гром», в котором он также сформулировал идею динамического хаоса. В этом рассказе один из организаторов предвыборной кампании после победы своего кандидата отправляется в путешествие по времени. Фирма, организующая такую поездку, устраивает с помощью машины времени для своих клиентов сафари – охоту на динозавров, которым в ближайшее время суждено умереть. Компания тщательно выбирает животных для отстрела и специальные маршруты передвижения охотников, чтобы происшедшее практически не имело последствий. Чтобы не нарушить сложную ткань причинно-следственных связей и не изменить будущее, следует двигаться по специальным тропам. Однако, по случайности, герой рассказа во время неудачной охоты сошел с маршрута и нечаянно раздавил золотистую бабочку. Возвратившись назад, он видит, что изменились состав атмосферы, правила правописания и итог предвыборной кампании. Едва заметное движение повалило маленькие костяшки домино, те повалили костяшки побольше, и, наконец, падение гигантских костяшек привело к катастрофе. Отклонения от исходной траектории, вызванные раздавленной бабочкой, стремительно нарастали. Малые причины имели большие следствия. Математики называют это свойство чувствительностью к начальным данным или "эффектом бабочки". Оно было обнаружено в 1903 году основоположником теории хаоса французским математиком Анри Пуанкаре. При попытке заранее рассчитать орбиты планет с учетом их взаимодействий, оказалось, что минимальное изменение используемых в расчетах входных величин приводило в конечном итоге к совершенно различным результатам.
Режимы, чувствительные к начальным условиям называют странными аттракторами. Предсказать поведение траекторий хаотических систем на длительное время невозможно, поскольку чувствительность к начальным условиям высока, а начальные условия, как в физических экспериментах, так и при компьютерном моделировании, можно задать лишь с конечной точностью.
Обнаруженный Лоренцем аттрактор, называемый теперь его именем, стал первым примером хаотического, или странного, аттрактора. Он описывает непериодическое движение. Движение в этом случае не станет периодическим, сколько бы мы ни ждали. В странном аттракторе система движется от одной точки к другой детерминированным образом, но траектория движения в конце концов настолько запутывается, что предсказать движение системы в целом невозможно. Характерно высказывание Ленина, которое приводит в своей книге Хобсбаум: "Революцию нельзя учесть, революцию нельзя предсказать, она является сама собой… Разве за неделю до февральской революции кто-либо знал, что она разразится?"
К настоящему времени странные аттракторы обнаружены в самых разных фрагментах мира природы и человека, начиная с метеорологии и кончая нейрофизиологией. Выяснилось, что множество систем нашего организма работают в хаотическом или близком к нему режиме. Причем часто хаос выступает как признак здоровья, а излишняя упорядоченность – как симптом болезни. В психоанализе неосознанные желания, установки могут моделироваться как странные аттракторы. Исследуя процессы взаимопереходов порядка и хаоса в обществе через призму синергетики, В.В. Василькова, отмечает, что «социально-организующая роль утопий проявляется в феномене спонтанного воспроизводства архетипических образов идеального порядка, дающих социальные ориентиры развивающемуся человечеству. В этом плане утопии выступают своего рода идеологическими странными аттракторами».
Тема 4: Философия и синергетика. 1. Философия, синергетика: точки пересечения.2.Синергетика и диалектика.3. Философско-методологическое значение синергетического подхода.1. Исследование и технологическое освоение развивающихся систем сегодня определяет передний край научно-технического развития. Эти системы следует отличать от менее сложных форм системной организации, к которым принадлежат малые (простые) и большие (сложные) самоорганизующиеся системы. Каждая из этих систем требует для своего освоения особых категориальных смыслов.
Для описания простых систем достаточно полагать, что суммарные свойства их частей исчерпывающе определяют свойства целого. Часть внутри целого и вне его обладает одними и теми же свойствами, связи между элементами подчиняются лапласовской причинности, пространство и время предстают как нечто внешнее по отношению к таким системам, состояния их движения никак не влияют на характеристики пространства и времени.
Нетрудно обнаружить, что все эти категориальные смыслы составляли своеобразную матрицу описания механических систем. Именно они выступали образцами малых (простых) систем. В технике – это машины и механизмы эпохи первой промышленной революции и последующей индустриализации: паровая машина, двигатель внутреннего сгорания, автомобиль, различные станки и т.п. В науке – объекты, исследуемые механикой. Показательно, что образ часов – простой механической системы - был доминирующим в науке XVII- XVIII вв. и даже первой половины ХIХ в. Мир устроен как часы, которые однажды завел Бог, а дальше они идут по законам механики. Категориальная сетка описания малых систем была санкционирована философией механицизма в качестве философских оснований науки этой эпохи. Как простую механическую систему рассматривали не только физические, но и биологические, а также социальные объекты. Здесь достаточно напомнить о концепциях человека и общества Ламетри и Гольбаха, о стремлении Сен-Симона и Фурье отыскать закон тяготения по страстям, аналогичный ньютоновскому закону всемирного тяготения, о первых попытках родоначальника социологии Конта построить теорию общества как социальную механику.
Но при переходе к изучению больших систем развитый на базе классической механики категориальный аппарат становится неадекватным и требует серьезных корректив. Большие системы приобретают целый ряд новых характеристических признаков. Они дифференцируются на относительно автономные подсистемы, в которых происходит массовое, стохастическое взаимодействие элементов. Целостность системы предполагает наличие в ней особого блока управления, прямые и обратные связи между ним и подсистемами. Большие системы гомеостатичны. В них обязательно имеется программа функционирования, которая определяет управляющие команды и корректирует поведение системы на основе обратных связей. Автоматические станки, заводы-автоматы, системы управления космическими кораблями, автоматические системы регуляции грузовых потоков с применением компьютерных программ и т.п. - все это примеры больших систем в технике. В живой природе и обществе – это организмы, популяции, биогеоценозы, социальные объекты, рассмотренные как устойчиво воспроизводящиеся организованности.
Категории части и целого применительно к сложным саморегулирующимся системам обретают новые характеристики. Целое уже не исчерпывается свойствами частей, возникает системное качество целого. Часть внутри целого и вне его обладает разными свойствами. Так, органы и отдельные клетки в многоклеточных организмах специализируются и в этом качестве существуют только в рамках целого. Будучи выделенными из организма, они разрушаются (погибают), что отличает сложные системы от простых механических систем, допустим, тех же механических часов, которые можно разобрать на части и из частей вновь собрать прежний работающий механизма. Исследования сложных саморегулирующихся систем особенно активизировались с возникновением кибернетики, теории информации и теории систем. Но многие особенности их категориального описания были выявлены предшествующим развитием биологии и в определенной мере квантовой физики. В становлении квантовой механики первоначально использовалась категориальная сетка, перенесенная из классической физики. Но в процессе возникновения новой теории ее создатели вынуждены были включить изменения в классические интерпретации. Выяснились принципиальные ограничения применения классических понятий «координата» и «импульс», «энергия» и «время» (соотношения неопределенности). Был сформулирован принцип дополнительности причинного и пространственно-временного описания, что внесло новые коррективы в понимание соответствующих категорий. Вырабатывалось представление о вероятностной причинности как дополнения к жесткой (лапласовской) детерминации. В отечественной литературе еще в 1970 гг. отмечалось (я имею в виду исследования Ю.В.Сачкова, В.И. Аршинова, а также собственные работы тех лет), что в квантовой физике прослеживаются многие черты описания сложных саморегулирующихся систем, при котором соединяются представления о вероятностных, случайных процессах, характеризующих систему, с представлениями о ее целостности.
Сложные саморегулирующиеся системы можно рассматривать как устойчивые состояния еще более сложной целостности – саморазвивающихся систем. Этот тип системных объектов характеризуется развитием, в ходе которого происходит переход от одного вида саморегуляции к другому. Саморазвивающимся системам присуща иерархия уровневой организации элементов, способность порождать в процессе развития новые уровни. Причем каждый такой новый уровень оказывает обратное воздействие на ранее сложившиеся, перестраивает их, в результате чего система обретает новую целостность. С появлением новых уровней организации система дифференцируется, в ней формируются новые, относительно самостоятельные подсистемы. Вместе с тем перестраивается блок управления, возникают новые параметры порядка, новые типы прямых и обратных связей. Сложные саморазвивающиеся системы характеризуются открытостью, обменом веществом, энергией и информацией с внешней средой. В таких системах формируются особые информационные структуры, фиксирующие важные для целостности системы особенности ее взаимодействия со средой («опыт» предшествующих взаимодействий). Эти структуры выступают в функции программ поведения системы. Сегодня познавательное и технологическое освоение сложных саморазвивающихся систем начинает определять стратегию переднего края науки и технологического развития. К таким системам относятся биологические объекты, рассматриваемые не только в аспекте их функционирования, но и в аспекте развития, объекты современных биотехнологий и, прежде всего, генетической инженерии, системы современного проектирования, когда берется не только та или иная технико-технологическая система, но еще более сложный развивающийся комплекс: человек – технико-технологическая система, плюс экологическая система, плюс культурная среда, принимающая новую технологию и весь этот комплекс рассматривается в развитии. К саморазвивающимся системам относятся современные сложные компьютерные сети, предполагающие диалог человек-компьютер, «глобальная паутина» - Интернет. Наконец, все социальные объекты, рассмотренные с учетом их исторического развития, принадлежат к типу сложных саморазвивающихся систем. К исследованию таких систем во второй половине ХХ века вплотную подошла и физика. Долгое время она исключала из своего познавательного арсенала идею исторической эволюции. Но во второй половине ХХ в. возникла иная ситуация. С одной стороны, развитие современной космологии (концепция Большого взрыва и инфляционная теория развития Вселенной) привело к идее становления различных типов физических объектов и взаимодействий. Появилось представление о возникающих в процессе эволюции различных видах элементарных частиц и их взаимодействий как результате расщепления некоторого исходного взаимодействия и последующей его дифференциации. С другой стороны, идея эволюционных объектов активно разрабатывается в рамках термодинамики неравновесных процессов (И. Пригожин) и синергетики. Взаимовлияние этих двух направлений исследования инкорпорирует в систему физического знания представления о самоорганизации и развитии.
2. Сложные саморазвивающиеся системы требуют для своего освоения особой категориальной сетки. Категории части и целого включают в свое содержание новые смыслы. При формировании новых уровней организации происходит перестройка прежней целостности, появление новых параметров порядка. Иначе говоря, необходимо, но недостаточно зафиксировать наличие системного качества целого, а следует дополнить это понимание идеей изменения видов системной целостности по мере развития системы. Уже в сложных саморегулирующихся системах появляется новое понимание вещи и процессов взаимодействия. Вещь (система) предстает как саморегулируемый процесс. В саморазвивающихся системах эти представления дополняются новыми смыслами. Традиционная для малых систем акцентировка (вещь как нечто первичное, а взаимодействие – это воздействие одной вещи на другую) сменяется представлениями о возникновении самих вещей в результате определенных взаимодействий. Вещь-система предстает в качестве процесса постоянного обмена веществом, энергией и информацией с внешней средой, как своеобразный инвариант в варьируемых взаимодействиях. А усложнение системы в ходе развития, связанное с появлением новых уровней организации, выступает как смена одного инварианта другим, как процесс перехода от одного типа саморегуляции к другому. Процессуальность объекта (системы) проявляется здесь в двух аспектах: и как саморегуляция, и как саморазвитие.Освоение саморазвивающихся систем предполагает новое расширение смыслов категории «причинность». Она связывается с представлениями о превращении возможности в действительность. Целевая причинность, понятая как характеристика саморегуляции и воспроизводства системы, дополняется идеей направленности развития. Эту направленность не следует толковать как фатальную предопределенность. Случайные флуктуации в фазе перестройки системы (в точках бифуркации) формируют аттракторы, которые в качестве своего рода программ-целей ведут систему к некоторому новому состоянию и изменяют возможности (вероятности) возникновения других ее состояний. Спектр направлений эволюции системы после возникновения аттракторов трансформируется, некоторые, ранее возможные направления становятся закрытыми. Появление нового уровня организации как следствия предшествующих причинных связей оказывает на них обратное воздействие, при котором следствие функционирует уже как причина изменения предшествующих связей (кольцевая причинность). Применительно к саморазвивающимся системам выявляются и новые аспекты категорий пространства и времени. Наращивание системой новых уровней организации сопровождается изменением ее внутреннего пространства-времени. В процессе дифференциации системы и формирования в ней новых уровней возникают своеобразные «пространственно - временные окна», фиксирующие границы устойчивости каждого из уровней и горизонты прогнозирования их изменений. Важно подчеркнуть, что первичные варианты категориального аппарата саморазвивающихся систем были генерированы в философии задолго до того, как соответствующие структурные характеристики этих систем стали предметом естественнонаучного исследования. В первой половине Х1Х в. естествознание активно разрабатывало идеи эволюции, но описание исторически развивающихся систем ограничивалось, скорее, феноменологическим подходом. Но в ту же эпоху Гегель разрабатывал категориальный аппарат, который выражал целый ряд важных структурных особенностей таких систем. Процедура порождения новых уровней организаций представлена им следующим образом: нечто (прежнее целое) порождает «свое иное», вступает с ним в рефлексивную связь, перестраивается под воздействием «своего иного» и затем этот процесс повторяется на новой основе. Важнейшим моментом этого процесса является «погружение в основание», изменение предшествующих состояний под воздействием новых (обогащение смыслов категорий). Эту схему саморазвития Гегель обосновывал, прежде всего, на материале исторического развития различных сфер духовной культуры (философии, религии, искусства, права). Позднее К. Маркс развил гегелевский подход применительно к анализу капиталистической экономики, рассматривая ее как целостную органическую, исторически развивающуюся систему (диалектика «Капитала»).Таким образом, системно-структурные характеристики саморазвивающихся систем и соответствующий категориальный аппарат первоначально разрабатывались в философии на материале социально-исторических объектов (включая развитие духовной культуры). В естествознании системно-структурные особенности таких систем стали исследоваться позднее, уже в ХХ столетии. Наиболее значимый вклад был сделан благодаря междисциплинарным исследованиям, приведшим к становлению синергетики. Сегодняшняя мода на синергетику напоминает многие сюжеты недалекого прошлого. В свое время был бум по поводу кибернетики. Потом произошло открытие советским сознанием дизайна. Это понятие было неправомерно расширено – заговорили о «дизайне культуры», «дизайне души». Потом все так же неожиданно утихло, мода прошла. Хотелось бы избежать аналогичной профанации синергетического подхода. Тем более что синергетика предлагает достаточно большой эвристический материал, адекватному философскому осмыслению которого может помешать профанированное употребление синергетической терминологии.
3. Среди новых идей и представлений, которые внесла синергетика (динамика нелинейных систем) в понимание развития, особо следует выделить два связанных между собой открытия. Во-первых, представление о кооперативных эффектах, определяющих воссоздание целостности системы. Во-вторых, концепцию динамического хаоса, раскрывающую механизмы становления новых уровней организации, когда случайные флуктуации в состояниях неустойчивости приводят к формированию аттракторов в нелинейной среде и последующему возникновению новых параметров порядка. То, что в традиционном диалектическом описании развития структурно не анализировалось, а просто обозначалось как «скачок», «перерыв постепенности», «переход в новое качество», теперь стало предметом научного анализа. Синергетика внесла целый ряд важных конкретизаций в понимание механизмов развития. Вместе с тем она имеет и границы применимости. Там, где речь идет о малых (простых) системах, где для решения тех или иных познавательных и практических задач можно абстрагироваться от развития и фазовых переходов, там применение синергетической терминологии избыточно. Еще раз подчеркну, что синергетика не отменяет и не заменяет системного исследования. Конкретные модели физических, биологических и социальных систем, рассмотренные в аспекте их изменения и развития, создаются в синергетике с учетом понятийного аппарата системных исследований. Синергетика не открывала ни иерархической связанности уровней организации в саморазвивающихся системах, ни наличия в них относительно автономных подсистем, ни прямых и обратных связей между уровнями, ни становления новых уровней сложной системы в процессе ее развития. Все это она заимствовала из ранее выработанных системных представлений, вошедших в научную картину мира и конкретизированных, прежде всего в биологии и социальных науках. Синергетика сосредотачивает внимание на процессах неустойчивости, состояниях динамического хаоса, порождающих ту или иную организацию, порядок. Теоретическое описание этих процессов основано на введении особых идеализаций. Любая система взаимодействует с другими системами. Она может входить и в более сложные системы и вместе с тем, включать в качестве своих подсистем другие системы (часто относящиеся к сложным организованностям). Она может обмениваться веществом, энергией, информацией с окружающими ее системами. Вся эта сложная сеть взаимодействий может быть представлена интегрально как нелинейная среда (или набор нелинейных сред). Идеализация нелинейной среды является одним из ключевых теоретических конструктов синергетики. Этот конструкт используется во многих конкретных теоретических моделях самоорганизации, относящихся к самым различным областям (физики, химии, биологии, исследования социальных процессов). Но его онтологизация имеет свои границы. Конечно, можно интерпретировать мир и как набор нелинейных сред. Но при этом остается в тени (и в явном виде не представлена) выявленная предшествующим развитием науки иерархия системных объектов, образующих нашу вселенную (кварки и другие элементарные, атомы, молекулы, макротела, звезды и планетные системы, галактики; уровни системной организации живого – доклеточный уровень, клетки, многоклеточные организмы, популяции, биогеоценозы, биосфера; структуры социальной жизни). Представление о саморазвивающихся системах объединяет обе эти установки. Они дополнительны, в смысле Н. Бора, и обе необходимы для описания саморазвивающихся систем. В ситуации неустойчивости, начала фазового перехода интегральное описание в терминах нелинейных сред оказывается наиболее эффективным. Но после становления нового уровня организации и формирования новых параметров порядка описание динамики системы предполагает выяснение новых связей, сложившихся между ее уровнями и подсистемами, анализ новых свойств элементов и подсистем, возникших в результате предшествующей системной трансформации. Таким образом, при интерпретации синергетики как теоретического описания саморазвивающихся систем устраняются односторонности, которые возникают при недостаточно четком осмыслении связей между синергетической парадигмой и системным подходом. Именно в этих связях синергетические представления могут быть включены в современную научную картину мира. Развитие современной научной картины мира на базе идей синергетики ставит и ряд новых, достаточно сложных проблем. При построении «синергетического варианта» общенаучной картины мира придется решать проблему включения в нее человека и его ценностей, но это будет связано с решением, по меньшей мере, еще двух важнейших задач. Наибольшие трудности связаны с представлениями о наличии в саморазвивающихся системах особых информационных структур-кодов, которые фиксируют ценную для системы информацию, выступают ее компонентом и определяют способы ее взаимодействия со средой и ее воспроизводимость как целого. Современная наука выявила и описала такого рода информационные структуры и их функции применительно к живым и социальным системам. Это – генетический аппарат биологических организмов; это – культура, ее базисные ценности в организмах социальных. Вопрос состоит в том, насколько возможно распространять такой подход на саморазвивающиеся системы неживой природы. Первые шаги в этом направлении уже сделаны. На мой взгляд, здесь следует выделить исследования Д.С. Чернавского, построившего модели генерации ценной информации в обобщенной форме, включая процессы самоорганизации в неживой природе.Различение синергетики как аспекта общей научной картины мира и как конкретных моделей самоорганизации позволяет прояснить механизмы междисциплинарных взаимодействий при исследовании сложных, саморазвивающихся систем. Термин «междисциплинарность» часто употребляется как обозначение специфики синергетики. При этом подчеркивается ее радикальное отличие, и даже полная противоположность дисциплинарному подходу. Основанием такого противопоставления выступает трактовка дисциплинарных исследований как ориентированных на предмет, а междисциплинарных на метод, соответственно которому отыскиваются соответствующие предметные области применения (Г. Хакен). Данная трактовка конкретизируется через описание дисциплинарных исследований как решения задач, детерминированных представлениями о предмете, где доминируют вертикальные связи от теории к опыту и обратно. В междисциплинарных исследованиях, напротив, предполагается, что главное – это горизонтальные связи, знание метода и переносы метода из одной науки в другую.Классическая, неклассическая, постнеклассическая наука предполагают различные типы рефлексии над деятельностью: от элиминации из процедур объяснения всего, что не относится к объекту (классика), к осмыслению соотнесенности объясняемых характеристик объекта с особенностями средств и операций деятельности (неклассика), до осмысления ценностно-целевых ориентаций субъекта научной деятельности в их соотнесении с социальными целями и ценностями (постнеклассика). Важно, что каждый из этих уровней рефлексии коррелятивен системным особенностям исследуемых объектов и выступает условием их эффективного освоения (простых систем как доминирующих объектов в классической науке, сложных саморегулирующихся систем – в неклассической, сложных саморазвивающихся – в постнеклассической). Объективность исследования как основная установка науки достигается каждый раз только благодаря соответствующему уровню рефлексии, а не вопреки ему. Я уже не раз отмечал, что все три типа научной рациональности взаимодействуют и появление каждого нового из них не отменяет предшествующего, а лишь ограничивает его, очерчивает сферу его действия.
Тема 5: Синергетика и научная рациональность. 1. Пути влияния синергетики на идеалы научной рациональности.2. Роль и место синергетики в современной науке. Междисциплинарность синергетики.3. Синергетика как парадигма нелинейности.4. В поисках единой науки: кибернетика, системные исследования, синергетика.1. Для того чтобы наше обсуждение носило конструктивный характер, надо уточнить исходные методологические понятия. Термины «междисциплинарный» и «трансдисциплинарный» применяются чаще всего интуитивно. И на этом уровне они трудно различимы. Нужен предварительный анализ соответствующего употребления терминологии. К междисциплинарным наукам мы относим, например, биохимию, биофизику, т.е. науки, в которых применяются понятийные средства и методы, выработанные в разных дисциплинах и синтезируемые в новой науке для решения ее специфических задач. Эти задачи принципиально решаемы только с использованием синтеза познавательных средств, заимствованных из разных дисциплин. Что же касается термина «трансдисциплинарный», то можно выделить два основных его смысла. Первый обозначает вненаучные знания, выходящие за рамки сложившихся научных дисциплин, но применяемые при поддержке и экспертизе научно-технических программ (политические мотивы, реклама в СМИ, вненаучные компоненты этической экспертизы и т.д.). В этом значении термин «трансдисциплинарный» используется, например, немецкими философами техники (Бехман, Грюневольд) при характеристике современной технонауки. Но этот термин может применяться и в другом смысле. Например, язык математики, будучи языком особой научной дисциплины, одновременно используется во множестве других наук и в инженерно-технологической деятельности. Уместно напомнить высказывание Ричарда Фейнмана, что математика больше чем наука, она – язык науки. В этом значении можно говорить о трансдисциплинарности математики. Здесь речь идет уже не о вненаучном знании, а о трансдисциплинарности как характеристике одного из языков науки. Синергетика, бесспорно, принадлежит к междисциплинарным направлениям науки, и в чем-то она сродни математике, поскольку ее язык начинает применяться в самых различных областях знания. Поэтому термин «трансдисциплинарный» в его втором значении может быть применим и для характеристики синергетики. Междисциплинарность и трансдисциплинарность не противоречат статусу синергетики как особой дисциплины. В этом качестве она сегодня конституируется, и с этим связаны дискуссии относительно ее места в современной системе наук. Она должна очертить свою предметную область, определить систему методологических принципов исследования и включить их в состав сложившейся системы научного знания. Решение этих задач означает:
- построение особой картины исследуемой реальности (дисциплинарной онтологии синергетики),
- формирование идеалов и норм синергетического исследования (идеалов и норм объяснения и описания, доказательности и обоснования, строения и построения знаний),
- разработку философских оснований синергетики, обеспечивающих обоснование ее картины исследуемой реальности, а также ее методологических установок, выражающих принятые идеалы и нормы исследования.
Все эти представления синергетической картины исследуемой реальности вводят образ предмета исследования как сложной, саморазвивающейся системы. Синергетика изучает закономерности таких систем. Она избыточна по отношению к тем задачам, в которых можно абстрагироваться от развития системы и фазовых переходов (а таких задач в науке множество). Но и развивающиеся системы в синергетике изучаются с особых позиций. Она делает акцент на идеях целостности, сложности в противовес идеям элементаризма и редукционизма. Каждый из этих подходов (холистский и элементаристский) представляют собой сильные идеализации. Но они могут быть рассмотрены как дополнительные (в смысле Н. Бора), необходимые для полноты описания процессов саморазвития. Акцентируя холистские аспекты, синергетика раскрывает ряд существенных закономерностей саморазвивающихся систем. В этом ее достоинство, но в этом и ее границы. Экспансия синергетических методов в различные науки эффективна там и тогда, где и когда требуется учитывать саморазвитие, его интегральные характеристики и закономерности. Недостаточно просто констатировать, что имеет место перенос синергетических методов в различные науки (ссылки на междисциплинарность и трансдисциплинарность синергетики часто не выходят за рамки этой констатации). Но это лишь первый шаг. Вторым шагом должен быть анализ, связанный с постановкой проблемы: почему возможен такой перенос, каковы его основания. Наконец, третьим аспектом философских оснований синергетики выступают мировоззренческие проблемы, связанные с включением в культуру новых научных представлений о саморазвитии. Здесь уже есть исследования (в том числе и мои), показывающие, что новые представления резонируют как с западной, так и с некоторыми восточными культурными традициями. Вместе с тем, эти представления создают точки роста новых ценностных ориентаций в современной культуре. Разумеется, все эти проблемы требуют дальнейшей углубленной проработки, и в этом я вижу основную задачу философов.
Тема 6: Синергетический подход в исследовании социальных систем. 1. Теоретические основания социальной синергетики.2 Общество как самоорганизующаяся система. Открытые и закрытые социальные системы. Особенности синергетических процессов в социальной сфере.3. Формы социального метаболизма (рынок, война, культурные контакты и др.). Иерархия социальных самоорганизующихся систем. Основные тенденции социальной самоорганизации. Синергетическая модель антропогенных кризисов.4. Методы использования понятийно-терминологического аппарата и теоретических схем синергетики при решении практических задач.1. Прошедший ХХ век оставил в наследство человечеству множество нерешенных проблем. Сегодня на планете каждый шестой человек голодает, каждый пятый не получает должного медицинского обслуживания, каждый четвертый не имеет достаточного образования, каждый третий пребывает в опасных экологических и техногенных условиях, каждый второй крайне пассивен к происходящим вокруг него трансформационным процессам, особенно политическим.
Экономическую сторону всех этих проблем призвана решать экономическая наука. Но парадокс заключается в том, что она сама пребывает в глубоком кризисе. Имеющийся у нее методологический арсенал не позволяет в полном объеме проникать в сущность крайне сложных и динамичных общественных процессов. Еще вчера казалось, что диалектический материализм с помощью своего категориального аппарата гарантирует решение любых гносеологических проблем. Но сегодня и он не может ответить на вопрос: почему еще во второй половине прошлого века социализм сотрясал капитализм своими "историческими преимуществами", а в последней четверти - уступил ему дорогу. В канун нового века явственно обозначился ряд новых тенденций мировой экономики, которые определяют ее развитие в текущем XXI веке. Эти тенденции состоят в следующем.
1. Глобализация экономической деятельности, выражающаяся во все большем расширении и углублении международных связей в сфере инвестиций, производства, обращения, снабжения и сбыта, финансов, научно-технического прогресса, образования. Постепенно на базе транснациональных корпораций (ТНК) складываются мощные международные хозяйственные комплексы, действующие во всеохватывающих, глобальных масштабах и ведущие конкурентную борьбу за рынки сбыта, материальные и финансовые ресурсы на мировой арене.
2. Либерализация мировой экономики, международной экономической деятельности, выражающаяся в постепенном (хотя далеко не всегда последовательном и прямолинейном) ослаблении или устранении препятствий на пути международного движения товаров, услуг, объектов интеллектуальной собственности, труда, капитала, финансовых ресурсов.
3. Регионализация мировой экономики, международной экономической деятельности, выражающаяся в формировании на всех континентах межгосударственных объединений (зон свободной торговли, таможенных союзов, "общих рынков", экономических сообществ и т.п.), предусматривающих создание благоприятных условий для развития экономических связей между странами-участниками. Примером наиболее глубокой региональной экономической интеграции может служить Европейский Союз, объединяющий ныне 15 стран и готовящийся к дальнейшему расширению за счет приема новых членов из числа стран Центральной и Восточной Европы.
4. Информатизация мировой экономики, выражающаяся во всем более широком использовании компьютерных систем, телекоммуникаций, сети Интернет в современной экономике, науке, образовании, культуре. Информационные технологии развиваются ускоряющимися, опережающими темпами, а информация - научно-техническая, экономическая, политическая, социальная - приобретает все большее значение в жизни общества, в том числе для международной экономической деятельности.
Каждая из указанных тенденций находится под влиянием как национальных особенностей, исторических традиций, экономической структуры отдельных стран, так и всей международной экономической и политической обстановки. Поэтому формы проявления данных тенденций часто и не всегда предсказуемо изменяются, осложняя общую ситуацию, и без того полную противоречий, связанных с усилением международной конкуренции. Кроме того, все указанные тенденции находятся во взаимосвязи друг с другом, образуя в своей совокупности весьма динамичную, сложную и противоречивую систему мировой экономики на ее современном этапе. Изложенное выше позволяет сделать, по крайней мере, два главных вывода.
1. Экономическая действительность слишком многовариантна и скорость ее изменения опережает темп ее изучения. Изменчивость экономических реалий, отчасти коренится в обратном влиянии экономических теорий на экономическое поведение. Выводы из экономических теорий довольно быстро становятся достоянием массы экономических агентов и влияют на формирование их ожиданий. Чтобы получить описание системы в целом, экономические теории связывают воедино модели индивидуального выбора с помощью того или иного организационного принципа, обычно - вводя понятие равновесия. Здесь возникают две не преодоленных и, видимо, принципиально непреодолимых трудности. Во-первых, естественные принципы не позволяют однозначно определить движение системы, равновесий оказывается "слишком много". Неполнота принципов равновесия приводит к необозримой множественности решений. Во-вторых, трудность состоит в разнообразии правдоподобных принципов. Из вальрасовских и кейнсианских моделей получаются совершенно разные выводы, при этом совсем не ясно, какую схему следует применять в той или иной ситуации. Переходные экономики являются источником многочисленных примеров такого рода.
Экономические выводы оказываются неустойчивыми относительно "малых" вариаций исходных допущений. Быстрый темп экономи