Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Чёрные дыры. В течение года после публикации общей теории относительности немецкий астроном Карл Шварцшильд нашёл первое точное решение уравнений Эйнштейна, которое

 

В течение года после публикации общей теории относительности немецкий астроном Карл Шварцшильд нашёл первое точное решение уравнений Эйнштейна, которое определяет форму пространства и времени в окрестности массивного сферического объекта, подобного звезде или планете. Замечательно не только то, что Шварцшильд нашёл своё решение, занимаясь вычислением траекторий артиллерийских снарядов на русском фронте во время Первой мировой войны, но также то, что он обыграл самого мастера игры — к тому моменту Эйнштейн нашёл лишь приближённые решения уравнений общей теории относительности. Эйнштейн был очень впечатлён и огласил достижения Шварцшильда, представив его работу перед Прусской академией наук; но даже он не смог увидеть то, что станет самым важным звеном наследия Шварцшильда.

Решение Шварцшильда показывает, что обычные тела, такие как Солнце и Земля, не сильно искривляют пространство, порождая очень мягкое давление на пространственно-временной батут, который в их отсутствие оставался бы плоским. Это хорошо соответствовало приближённым решениям Эйнштейна, которые ему удалось найти ранее. Но Шварцшильд смог выйти за рамки приближений. Его точное решение обладало поразительным свойством: если достаточное количество массы сжать до объёма небольшого шара, то возникнет гравитационная пропасть. Пространственно-временная кривизна станет настолько экстремальной, что всё, что отважится оказаться слишком близко, будет захвачено в ловушку. Поскольку это «всё» включает свет, такие области потемнеют и станут чёрными, что явилось причиной исходного термина «чёрные звёзды». Экстремальное искривление заставит замереть на краю звезды даже время: отсюда возник другой термин — «замёрзшие звёзды». Спустя полвека Уилер, который столь же хорошо умел рекламировать вещи, как и заниматься физикой, сделал популярными такие звёзды как среди научной общественности, так и у любителей науки, дав им более запоминающееся имя: «чёрные дыры». Название прижилось.

Когда Эйнштейн прочёл статью Шварцшильда, он согласился с математическими выкладками применительно к обычным звёздам и планетам. Однако выкладки насчёт того, что теперь называется чёрными дырами, Эйнштейн воспринял с улыбкой. В те времена даже Эйнштейну было трудно полностью разобраться в сложной математической структуре общей теории относительности. И хотя до появления современного понимания чёрных дыр оставалось несколько десятилетий, интенсивное сворачивание пространства и времени, уже в то время с очевидностью следовавшее из уравнений, было, по мнению Эйнштейна, слишком радикальным, чтобы быть правдой. Так же как спустя несколько лет он будет сопротивляться идее космического расширения, Эйнштейн отказывался верить, что такая экстремальная конфигурация вещества является чем-то бо́льшим, чем вышедшими из-под контроля математическими манипуляциями, хоть и вытекающими из его собственных уравнений.101

Когда вы видите числа, которые возникают из уравнений, и вы можете легко прийти к такому же выводу. Чтобы звезда с массой Солнца стала чёрной дырой, она должна сжаться до шара размером приблизительно три километра в поперечнике; тело с массой Земли станет чёрной дырой, только если сожмётся до шарика диаметром в один сантиметр. Идея о существовании таких экстремальных конфигураций вещества кажется просто смехотворной. Всё же за прошедшие десятилетия астрономы собрали многочисленные наблюдательные данные, свидетельства относительно того, что чёрные дыры существуют и их много. Широко признано, что в центре огромного количества галактик может находиться чёрная дыра; считается, что наша собственная галактика Млечный Путь вращается вокруг чёрной дыры, масса которой примерно равняется трём миллионам масс Солнца. Есть даже шанс, как обсуждалось в главе 4, что на Большом адронном коллайдере можно сгенерировать крошечные чёрные дыры посредством «утрамбовывания» массы (и энергии) протонов, сталкивающихся на очень высоких энергиях, в такой крохотный объём, что можно снова применить результаты Шварцшильда, хоть и на микроскопических расстояниях. Являясь выдающейся демонстрацией способности математики высветить самые тёмные уголки нашей Вселенной, чёрные дыры стали центром внимания современной физики.

Помимо того, что чёрные дыры — это находка для наблюдательной астрономии, они также стали богатым источником вдохновения в теоретических исследованиях, создавая математический плацдарм, на котором физики могут апробировать применимость своих идей, изучая с помощью бумаги и ручки одно из самых экстремальных явлений природы. Именно так получилось, когда в начале 1970-х годов Уилер осознал, что если почтенный Второй закон термодинамики — на протяжении примерно столетия являющийся указующим перстом для понимания взаимосвязи между энергией, работой и теплом — рассматривать применительно к окрестности чёрной дыры, то похоже, что он перестаёт работать. Свежий взгляд на этот вопрос Якоба Бекенштейна, студента Уилера, пришёл на выручку, посеяв при этом семена возникшего впоследствии голографического принципа.

 



<== предыдущая лекция | следующая лекция ==>
Информация. Джон Уилер помимо способности находить и взращивать очень талантливых молодых учёных (помимо Хью Эверетта, его студентами были Ричард Фейнман, Кип Торн и, как | Второй закон. Афоризм «лучше меньше, да лучше» имеет много форм. «Убрать всё лишнее». «Нужны только факты и ничего кроме фактов». «Меньше знаешь, крепче спишь». «Справок не
Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 371 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2305 - | 2068 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.