Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Dynamics of simple harmonic motion




For one-dimensional simple harmonic motion, the equation of motion, which is a second-order linear ordinary differential equation with constant coefficients, could be obtained by means of Newton's second law and Hooke's law.

 

 

where m is the inertial mass of the oscillating body, x is its displacement from the equilibrium (or mean) position, and k is the spring constant.

Solving the differential equation above, a solution which is a sinusoidal function is obtained.

In the solution, c 1 and c 2 are two constants determined by the initial conditions, and the origin is set to be the equilibrium position. Each of these constants carries a physical meaning of the motion: A is the amplitude (maximum displacement from the equilibrium position), ω = 2π f is the angular frequency, and φ is the phase.

Position, velocity and acceleration of a harmonic oscillator

 

Using the techniques of differential calculus, the velocity and acceleration as a function of time can be found:

 

Position, velocity and acceleration of a SHM as phasors

Acceleration can also be expressed as a function of displacement:

Then since ω = 2π f,

and since T = 1/ f where T is the time period,

These equations demonstrate that the simple harmonic motion is isochronous (the period and frequency are independent of the amplitude and the initial phase of the motion).





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 415 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Неосмысленная жизнь не стоит того, чтобы жить. © Сократ
==> читать все изречения...

2280 - | 1986 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.