ВИДЫ АВАРИЙ, ИХ ПРИЧИНЫ И МЕРЫ ПРЕДУПРЕЖДЕНИЯ
Авариями в процессе бурения называют поломки и оставление в скважине частей колонн бурильных и обсадных труб, долот, забойных двигателей, потерю подвижности (прихват) колонны труб, спущенной в скважину, падение в скважину посторонних металлических предметов. Аварии происходят главным образом в результате несоблюдения утвержденного режима бурения, неисправности бурового оборудования и бурильного инструмента и недостаточной квалификации или халатности членов буровой бригады.
Основными видами аварий являются прихваты, поломка в скважине долот и турбобуров, поломка и отвинчивание бурильных труб и падение бурильного инструмента и других предметов в скважину. Очень часто прихват инструмента в силу некачественных и несвоевременных работ по его ликвидации переходит в аварию.
В основном прихваты бурильных и обсадных колонн происходят по следующим причинам.
1. Вследствие перепада давлений в скважине в проницаемых пластах и непосредственного контакта некоторой части бурильных и обсадных колонн со стенками скважины в течение определенного времени.
2. При резком изменении гидравлического давления в скважине в результате выброса, водопроявления или поглощения бурового раствора.
3. Вследствие нарушения целостности ствола скважины, вызванного обвалом, вытеканием пород или же сужением ствола.
4. При образовании сальников на долоте в процессе бурения или во время спуска и подъема бурильного инструмента.
5. Вследствие заклинивания бурильной и обсадной колонн в желобах, заклинивания бурильного инструмента из-за попадания в скважину посторонних предметов, заклинивания нового долота в суженной части ствола из-за сработки по диаметру предыдущего долота.
6. В результате оседания частиц выбуренной породы или твердой фазы глинистого раствора при прекращении циркуляции бурового раствора.
7. При неполной циркуляции бурового раствора через долото за счет пропусков в соединениях бурильной колонны.
8. При преждевременном схватывании цементного раствора в кольцевом пространстве при установке цементных мостов.
9. При отключении электроэнергии или выходе из строя подъемных двигателей буровой установки.
Для предупреждения прихватов необходимо:
1) применять высококачественные глинистые растворы, дающие тонкие плотные корки на стенках скважин, снижать липкость глинистого раствора, вводить смазывающие добавки;
2) обеспечивать максимально возможную скорость восходящего потока глинистого раствора; перед подъемом бурильной колонны промывка скважин должна производиться до полного удаления выбуренной породы и приведения параметров глинистого раствора в соответствие с указанными в ГТН;
3) обеспечивать полную очистку глинистого раствора от обломков выбуренной породы;
4) регулярно прорабатывать в процессе бурения зоны возможного интенсивного образования толстых корок;
5) утяжелять глинистый раствор при вращении бурильной колонны;
6) следить в глубоких скважинах за температурой восходящего глинистого раствора, так как резкое снижение ее свидетельствует о появлении разрыва резьбовых соединений в колонне бурильных труб выше долота;
7) при вынужденных остановках необходимо:
а) через каждые 3 - 5 мин расхаживать бурильную колонну и проворачивать ее ротором;
б) при отсутствии электроэнергии подключить аварийный дизель-генератор и бурильную колонну периодически расхаживать; при его отсутствии бурильный инструмент следует разгрузить примерно на вес, соответствующий той части колонны труб, которая находится в необсаженном интервале ствола, и прекратить промывку, периодически возобновляя ее при длительной остановке;
в) в случае выхода из строя пневматической муфты подъемного механизма следует немедленно установить аварийные болты и расхаживать бурильную колонну или поднимать ее;
8) для предотвращения прихвата бурильной колонны при использовании утяжеленного глинистого раствора следует систематически применять профилактические добавки: нефть (10 - 15%), графит (не более 0,8%), поверхностно-активные вещества (например, сульфонол в виде 1 - 3 %-ного водного раствора, смазочные добавки СМАД-1 (до 3%) и СГ (до 2%). Подбор рецептур в каждом определенном случае должен уточняться лабораторией глинистых растворов. При бурении разведочных скважин добавлять нефть и другие добавки на нефтяной основе не рекомендуется, чтобы не исказить представление о продуктивности горизонтов.
Поломка долот вызывается спуском дефектных долот при отсутствии надлежащей проверки их, чрезмерными нагрузками на долото и передержкой долот на забое. Заклинивание шарошек возникает вследствие прекращения вращения шарошек на забое скважины, т. е. происходит прихват их на осях. Основные признаки поломки долота во время бурения-прекращение углубления скважины и сильная вибрация бурильной колонны. Чаще всего происходит поломка подшипников шарошек колонковых и трехшарошечных долот. При этом забойный двигатель перестает принимать нагрузку, а при роторном бурении бурильная колонна начинает заклиниваться. Поломку долота при проработке ствола скважины очень трудно обнаружить до подъема бурильной колонны. Поэтому необходимо особенно тщательно проверять долота, применяемые для проработки, и ограничивать время их работы.
Чтобы предотвратить аварии, связанные с поломкой долот, необходимо:
1) перед спуском долота в скважину проверить его диаметр кольцевым шаблоном, а также проверить замковую резьбу, сварочные швы лап и корпуса и промывочные отверстия - наружный осмотр, насадку шарошек на цапфах - вращением от руки;
2) бурить в соответствии с указаниями геолого-технического наряда. Особое внимание должно быть обращено на очистку промывочной жидкости;
3) поднятое из скважины долото отвинчивать при помощи долотной доски, вставленной в ротор, промывать водой, подвергать наружному осмотру и замеру.
Рекомендуется периодически очищать забой скважины от металла магнитным фрезером или забойным шламоуловителем.
Поломки турбобура происходят вследствие разъедания буровым раствором, развинчивания и вырывания верхней резьбы корпуса из нижней резьбы переводника и отвинчивания ниппеля с оставлением в скважине турбины. Признак таких поломок резкое падение давления на буровых насосах и прекращение проходки.
Для предотвращения аварий с турбобурами надо проверять крепление гайки, переводника, ниппеля и вращение вала у каждого турбобура; такая проверка турбобура, поступившего с завода-изготовителя, производится на базе бурового предприятия, а турбобура, поступившего из ремонта, - на буровой. Перед спуском в скважину нового турбобура или турбобура, поступившего из ремонта, необходимо проверять плавность его запуска при подаче насосов, соответствующей нормальному режиму его работы, осевой люфт вала, перепад давления, герметичность резьбовых соединений и отсутствие биения вала. Все данные нужно заносить в журнал.
Аварии с бурильными трубами часто бывают при роторном бурении скважин. Одна из основных причин этих аварий - совокупность всех напряжений, возникающих в трубах, особенно при местных пороках в отдельных трубах. К последним относятся разностенность труб, наличие внутренних напряжений в трубах, особенно в их высаженной части, как следствие неправильно проведенного технологического процесса по изготовлению труб, и дефекты резьбового соединения труб.
К основным причинам возникновения аварий с бурильными трубами относится также недостаточная квалификация мастеров, бурильщиков и других работников буровых бригад.
Наибольшее число аварий с бурильными трубами при бурении гидравлическими забойными двигателями связано с разъеданием резьб промывочной жидкостью.
Основными мерами предупреждения аварий с бурильными трубами являются:
1) организация учета и отработка бурильных труб в строгом соответствии с инструкцией;
2) технически правильный монтаж труб и замков, обеспечиваемый предварительным осмотром и обмером их, калибровкой резьбы гладкими и резьбовыми калибрами, подбором замков к трубам по натягу и принудительным закреплением замка в горячем состоянии;
3) организация обязательной профилактической проверки всех труб после окончания бурения скважины путем наружного осмотра, проверки основных размеров и гидравлического испытания;
4) обязательное крепление всех замковых соединений машинными ключами при наращивании и спуске колонны при турбинном бурении;
5) использование предохранительных колпаков или колец, навинчиваемых на резьбу замков;
6) бесперебойное снабжение буровых специальными смазками.
Падение бурильной колонны в скважину, являющееся одним из самых тяжелых видов аварии, происходит вследствие толчков и ударов бурильной колонны о выступы на стенках скважины, открытия элеватора при случайных задержках бурильной колонны во время спуска, резкой посадки нагруженного элеватора на ротор при неисправности тормоза лебедки и при обрыве талевого каната и падении талевого блока на ротор. Для предотвращения открытия элеватора при спуске бурильной колонны бурильщикам необходимо хорошо знать состояние ствола скважины, наличие в ней уступов и при приближении к ним замедлять спуск.
Плашка и цепи механических ключей, звенья роторной цепи, болты, гайки и другие детали - таков неполный перечень мелких предметов, падающих на забой скважины. Падение их происходит во время спуско-подъемных операций и объясняется использованием неисправного инструмента.
Иногда после подъема бурильной колонны начинают производить работы над открытым устьем скважины, и это приводит к тому, что на забой скважины падают долота, кувалды и другие предметы. Надо всегда помнить, что над открытой скважиной категорически запрещается проводить какие-либо работы. После того как из скважины извлечен инструмент, ее устье следует немедленно закрыть специальной крышкой.
ЛИКВИДАЦИЯ ПРИХВАТОВ
В практике бурения применяется ряд методов ликвидации прихватов бурильных и обсадных колонн.
Затяжки и небольшие прихваты обычно ликвидируются расхаживанием (многократно чередующееся опускание и поднимание колонны) и проворачиванием ротором бурильной колонны. Усилие, которое прикладывается к трубам во время расхаживания, может намного превышать собственный вес колонны и.лимитируется прочностью труб и талевой системы. Поэтому перед расхаживанием должно быть тщательно проверено состояние вышки, талевой системы, лебедки и их прочность, а также состояние индикатора веса. Если расхаживанием не удается ликвидировать прихват, то дальнейшие работы будут зависеть от вида прихвата. Так, прихваты, происшедшие под действием перепада давления, как правило, ликвидируют жидкостными ваннами (нефтяными, водяными, кислотными и щелочными).
Если, несмотря на принятые меры, бурильную колонну освободить не удается, ее развинчивают по частям при помощи бурильных труб с левой резьбой. При развинчивании прихваченной части приходится вначале расфрезеровывать сальник, образовавшийся вокруг труб. Этот процесс очень длителен и малоэффективен. Поэтому если для извлечения прихваченной части бурильной колонны требуется много времени, обычно ее оставляют в скважине и обходят стороной. Такое отклонение ствола, называемое «уходом в сторону», производят, используя методы бурения наклонных скважин.
Место прихвата определяют при помощи прихватоопределителя. Работа прихватоопределителя основана на свойстве ферромагнитных материалов, размагничивающихся при деформации предварительно намагниченных участков. В зону предполагаемого места прихвата спускается прибор для получения характеристики намагниченности прихваченных труб. Производится первый контрольный замер в месте прихвата. Далее в зоне прихвата устанавливаются контрольные магнитные метки путем подачи тока через электромагнит на участки колонны, расположенные друг от друга на 10 м. При этом на каждом участке намагничивается отрезок трубы длиной 15 - 20 см.
Вторым контрольным замером записывается кривая магнитной индукции вдоль всего участка, где установлены магнитные метки. Последние на кривой магнитной индукции выделяются четкими аномалиями. На диаграмме меньшими аномалиями отбиваются также замки и муфты.
После этого прихваченную колонну труб расхаживают непродолжительное время, при этом металл неприхваченных труб испытывает деформацию, в результате которой магнитные метки пропадают. В зоне прихвата магнитные метки не исчезают, так как этот участок не деформируется.
Третьим контрольным замером определяют участок, где магнитные метки не исчезли, т. е. определяется интервал прихвата.
ЛОВИЛЬНЫЙ ИНСТРУМЕНТ И РАБОТА С НИМ
Под ловильнымй работами понимают совокупность операций, необходимых для освобождения ствола скважины от посторонних предметов до возобновления в нем бурения.
Ловильный инструмент. Для ловильных работ используют специальные (ловильные) инструменты самых различных типов и назначений. Остановимся на основных из них.
Метчики предназначены для ловли оставшейся в скважине колонны бурильных труб, если обрыв произошел в утолщенной части трубы, в замке или муфте. Правые метчики применяют для извлечения колонны целиком, а левые (на левых бурильных трубах) - для извлечения колонны по частям.
Ловильный метчик имеет форму усеченного конуса для врезания в детали замка бурильных труб при ловильных работах. На верхнем конце метчика нарезана резьба замка бурильных труб, а на нижнем конце - специальная ловильная резьба (правая или левая).
Колокола служат для ловли бурильных или обсадных труб, когда слом произошел в теле трубы, а также при срыве резьбовых соединений трубы, за исключением случаев, когда срыв резьбы возник со стороны ниппеля замка.
Если слом неровный с наличием лент или имеется трещина вдоль трубы, не перекрываемая колоколом, то для ловли необходимо применять «сквозной» (открытый) колокол с соответствующим патрубком или трубой. Для извлечения долота, оставшегося в скважине вследствие отвинчивания или срыва резьбы, применяют колокол-калибр.
Правые колокола используют при ловле правыми бурильными трубами всей оставшейся колонны, а левые - при ловле левыми бурильными трубами для отвинчивания части оставленной колонны.
Колокола изготовляют из кованых заготовок, в верхней части которых для присоединения к бурильным трубам нарезают резьбу. В нижней части колокола нарезают внутреннюю ловильную резьбу специального профиля для захвата бурильных труб при ловильных работах.
Когда конец оставшейся в скважине бурильной трубы в результате слома оказался неровным и имеются продольные трещины, то применяют «сквозной» (открытый) шлипс с соответствующим патрубком или трубой для ловли за первую от сломанного конца муфты или за целую часть трубы. Шлипс позволяет промывать скважину через захваченную бурильную колонну. Если не удается поднять оставшуюся часть колонны, шлипс можно освободить.
Овершот служит для извлечения бурильной колонны с захватом под замок. Его применяют в основном там, где ловитель нельзя использовать, а колоколом и метчиком не удается соединиться с оставшейся на забое частью бурильной колонны и где длина колонны не превышает 400 м и она не прихвачена.
Овершот представляет собой корпус из толстостенной, обычно башмачной трубы, внутри которого приклепаны четыре стальные пружины. Верхние концы пружин отогнуты согласно размеру бурильных труб, для ловли которых предназначен овершот.
Наружную труборезку применяют в тех случаях, когда освободить прихваченную бурильную колонну при помощи нефтяных, водяных, кислотных ванн или торпедированием не удается и оставшиеся в скважине трубы не искривлены.
Удочку («ерш») используют для извлечения оставленного в скважине стального каната и каротажного кабеля. Удочку изготовляют наваркой крючков на стержень или на метчик в шахматном порядке или же из обсадной трубы, на теле которой делаются вырезы, загибающиеся внутрь. Запрещается спуск в скважину удочки («ерша») без специального хомута, ограничивающего пропуск этого инструмента в зону нахождения оставленного каната или кабеля.
Отводные крючки предназначены для центрирования оставшегося в скважине конца бурильных труб.
Диаметр (внешний) зева крючка обычно на 52 - 50 мм меньше диаметра скважины. На внутренней поверхности зева крючка перед спуском в скважину делают насечки, по сработанности которых судят (после подъема) о том, как работал крючок, касался он колонны или нет. Применять отводной крючок разрешается только при свободном дохождении его до «головы» слома.
Фрезер используют для частичного или полного удаления металлических выступающих частей или деталей. Работа фрезером (фрезерование) состоит в разрушении металлического объекта и превращении его в стружку. Внешняя форма фрезера зависит от его назначения:
а) фронтального действия: плоский; конический; и цилиндрический;
б) внешнего воздействия: в форме усеченного конуса, конической, цилиндрическойи цилиндрическо-конической.
в) внутреннего воздействия: цилиндрическо-коническая форма и комбинированного воздействия.
ЛИКВИДАЦИЯ АВАРИЙ
Ликвидация аварий с бурильными трубами и долотами
Успешная ликвидация аварий с бурильными трубами в большой степени зависит от того, как скоро замечен момент слома труб. При обнаружении аварий с бурильными трубами бурильщик поднимает их с максимальной скоростью. Поднятый конец сломанной части бурильной колонны на поверхности очищают, промывают и осматривают для выяснения характера слома. Затем подсчитывают количество свечей, оставшихся в скважине, определяют глубину, на которой находится верхний конец поломанной колонны труб, и намечают мероприятия по ликвидации аварии.
Работы по ликвидации аварии (любой) в скважине ведутся буровым мастером под руководством старшего инженера (мастера) по сложным работам или главного (старшего) инженера бурового предприятия (разведки, участка) в зависимости от сложности работ.
Перед спуском в скважину ловильного инструмента составляется эскиз общей его компоновки и ловильной части с указанием основных размеров. Для ловли бурильной колонны применяют ловитель (шлипс) с промывкой, метчик или колокол. Эти инструменты позволяют после захвата оставшейся колонны бурильных труб производить расхаживание и промывку скважины. Длина спускаемого в скважину инструмента для ловильных работ должна подбираться с таким расчетом, чтобы крепление ловильного инструмента осуществлялось ротором с пропущенной через стол ротора ведущей бурильной колонной.
Ловитель (шлипс) применяют как для ловли з.а замок, так и за трубу. Для извлечения колонны ловителем дают натяжку, включают буровой насос, восстанавливают циркуляцию, после чего приступают к ее подъему. Если колонна не поднимается, ее расхаживают без вращения.
Метчик обычно спускают с направляющей трубой большего диаметра, оканчивающейся воронкой. Спущенный на бурильных трубах метчик покрывает оборванный конец трубы воронкой и конусом входит внутрь трубы до тех пор, пока не упрется в кромку трубы. Приподняв немного бурильную колонну, чтобы ослабить давление на оборвавшийся конец трубы, проворачивают ее по часовой стрелке на 90°, затем обратно на 45° и опять на '/4 оборота по часовой стрелке. При постепенном опускании бурильной колонны вниз метчик врезается в трубы и закрепляется в них. Запрещается окончательно закреплять ло-вильный инструмент на сломе до восстановления циркуляции бурового раствора через долото. После этого пробуют поднять колонну. В случае прихвата ее расхаживают. При расхаживании необходимо помнить, что подъемные усилия выше допустимых вызывают срыв ловильного инструмента, обрыв бурильных труб, обрыв талевого каната или разрушение вышки. Если циркуляцию восстановить не удается, метчик под натяжкой срывают.
Аналогично описанному ведутся работы по соединению и извлечению оставшейся колонны при помощи колокола.
При сильном отклонении конца колонны от центра скважины ее отводят к центру посредством отводного крючка и лишь после этого спускают метчик или колокол.
Когда даже после восстановления циркуляции не удается расхаживанием освободить колонну, прибегают к нефтяной ванне или принимают другие меры. Если все попытки освободить инструмент безрезультатны, приступают к развинчиванию его по частям левым метчиком или колоколом на левых трубах. Иногда вместо отвинчивания по частям офрезерованную часть оставшегося инструмента вырезают при помощи наружной труборезки. При этом отрезанная часть извлекается из скважины вместе с труборезкой.
Основной инструмент для извлечения оставшихся в скважине деталей долот - магнитный фрезер, который спускают в скважину на бурильных трубах. Не доходя до забоя 6 - 7 м, начинают промывку, вращая ротор на малой скорости. Дойдя до забоя, при небольшой осевой нагрузке фрезер собирает оставшиеся детали в центр забоя, коронка магнитного фрезера забуривается в породу, нижний полюс сближается с оставшимися на забое деталями и удерживает их. Затем промывка прекращается и начинается подъем бурильной колонны. Ни в коем случае не следует продолжительное время работать на оставшихся металлических деталях - это в большинстве случаев приводит к осложнению аварии. Магнитный фрезер используют также для ловли всевозможных мелких металлических предметов, упавших в скважину.
Ликвидация аварий с турбобурами
Аварии, вызванные срывами резьбы турбобура, ликвидируются довольно быстро калибром (в качестве калибра обычно используется переводник турбобура), навинчиваемым на сорванную резьбу корпуса, либо специальными ловителями, захватывающими турбобур за контргайку пяты, или специальным метчиком, пропускаемым внутрь верхнего отверстия вала. Большие затруднения при турбинном бурении вызывает заклинивание долота. В данном случае отбивка долота вращением колонны бурильных труб при помощи ротора исключается, так как долото и колонна бурильных труб соединяются через подшипники турбобура и вращение бурильных труб приводит к вращению только корпуса турбобура. Поэтому, прежде чем отбить долото вращением, надо расклинить вал турбобура в корпусе. Для этого необходимо забросить в трубы мелкие металлические предметы. Забрасывать эти предметы следует с прокачкой бурового раствора для того, чтобы гарантировать попадание мелких металлических предметов в турбину турбобура. При прокачивании бурового раствора и медленном вращении бурильной колонны ротором металлические предметы, попадая между верхними лопатками верхних ступеней турбины, разрушают эти лопасти, которые, в свою очередь попадают в следующие ступени и вызывают заклинивание статоров и роторов.
В случае заклинивания вала в корпусе турбобура долото отбивают так же, как и в роторном бурении, вращением колонны бурильных труб, так как при этом вращение бурильных труб будет обеспечивать и вращение долота.
Аварии при бурении одной и той же скважины могут возникнуть при замене турбобуров меньших диаметров турбобурами больших диаметров. Это объясняется тем, что в стенках скважины в местах перехода из одних пород в другие образуются уступы, определяющие проходимость данного типоразмера турбобура при вполне определенном диаметре долота.
Уход в сторону от оставшегося в скважине инструмента. Когда оставленную в скважине бурильную колонну не удается поднять или когда на извлечение ее требуется слишком много времени, следует уходить в сторону, т. е. бурить новый (второй) ствол скважины. Для этого выше места, где находится конец оставшегося инструмента, начинают бурить новый ствол.
Если в стволе скважины не имеется сильно искривленного участка, откуда удобнее всего забуриваться, над оставшейся колонной ставят цементный мост и после его затвердения начинают забуривать новый ствол роторным или турбинным способом, Торпедирование скважин. Работы по ликвидации аварий в скважинах иногда длятся долго и не дают положительных результатов. В этих случаях целесообразно торпедировать колонну, оставшуюся в скважине, а затем бурить второй ствол до проектной глубины. Торпедирование заключается в том, что в скважину на определенную глубину спускают взрывчатое вещество, которое, взрываясь, разрушает оставшуюся в скважине колонну.
Для успешного раздробления больших металлических кусков или для загона их в раздробленном состоянии в стенки скважины снаряд со взрывчатым веществом (торпеду) устанавливают в непосредственной близости к предмету, подлежащему разрушению. Для этого тщательно прорабатывают долотом место, где должен быть установлен снаряд, опускают сначала шаблон, а затем спускают снаряд со взрывчатым веществом для взрыва.
Для взрыва внутри прихваченных бурильных труб следует применять торпеду, диаметр которой должен быть на 10 мм меньше диаметра проходного отверстия бурильных труб. Торпеду нужно взрывать против муфты или замка, иначе в трубе может получиться от взрыва только продольная трещина, которая будет бесполезна, потому что не удастся поднять верхнюю часть бурильной колонны.
Аварии с обсадными трубами
Наиболее распространенный вид аварий с обсадными трубами - отвинчивание башмака колонны и протирание обсадных труб. Башмак колонны отвинчивается в том случае, когда нижняя часть колонны не закреплена, например, когда цемент закачан выше башмака или не схватился у башмака. При дальнейшем бурении, особенно роторным способом, не зацементированный башмак от трения муфт бурильных труб отвинчивается. Чтобы определить расположение отвинтившегося башмака, в скважину обычно опускают печать, выполненную из куска обсадной трубы. Нижняя часть печати имеет воронкообразную форму. В эту часть вставлена деревянная пробка, в которую забиты гвозди; гвозди оплетены проволокой и залиты гудроном или свинцом. Печать опускают до отвинченного башмака. По отпечатку судят о том, как расположен башмак в скважине. Такую аварию ликвидируют при помощи пикообразных долот, которыми стремятся поставить башмак вертикально, чтобы долото полного размера свободно проходило через него. Лучшее средство против возникновения таких аварий - упрочнение нижних труб кондуктора и технических колонн сваркой. При длительной работе бурильные трубы своими муфтами и замками иногда совершенно протирают обсадные трубы. Средством предохранения от протирания служат предохранительные кольца. Протирание обсадных труб будет значительно интенсивнее в искривленной скважине.
Когда против протертого места обсадной колонны имеется цементный стакан, в колонне в процессе бурения не происходит никаких осложнений. Если цементный стакан отсутствует, то при бурении обсадные трубы могут рваться лентами, что затрудняет проход долота. Если же, кроме того, за трубами будут обваливающиеся породы, протирание может осложниться смятием. Во всех этих случаях единственная мера ликвидации аварии- спуск и цементирование промежуточной обсадной колонны меньшего диаметра.
Давления в скважине
Гидродинамические давления при проведении различных технологических операций:
1. Нет циркуляции, нет движения инструмента:
РСКВ = РГС
2. Циркуляция:
РСКВ = РГС + ΔРКП
3. Движение инструмента вниз:
РСКВ = РГС + ΔРПОРШ.
4. Движение инструмента вверх:
РСКВ = РГС - ΔРСВАБ. (РСКВ - min)
5. Движение вниз с циркуляцией:
РСКВ = РГС + ΔРКП + ΔРПОРШ. (РСКВ - max)
6. Движение вверх с циркуляцией:
РСКВ = РГС + ΔРКП - ΔРСВАБ.
7. Проработка:
РСКВ = РГС + ΔРКП + ΔРПОРШ. (V СПО = V ПРОРАБ)
где РСКВ - давление в скважине;
РГС - гидростатическое давление: РГС = ρН/10
ΔРКП - потери давления в кольцевом пространстве; ΔРКП = f (Q 2, S КП, ρ, t 0, h)
ΔРПОРШ - давление поршневания; ΔРПОРШ, ΔРСВАБ. = f (V СПО, S КП, ρ, q , h)
ΔРСВАБ. - давление свабирования;
V СПО - скорость спуско-подъемных операций; V ПРОРАБ - скорость проработки.
АВПД
3.6.1. Понятия о давлениях - горное, скелетное, пластовое. Нормальные и аномальные давления. Изменение пористости и плотности пород с глубиной. Нормальное уплотнение пород
Объёмная и минералогическая плотность
Плотность горных пород является основным физическим параметром, который наряду с пористостью широко используется для выделения зон аномально-высоких поровых давлений (АВПоД) и пород-коллекторов.
Плотностью горной породы (ρ) называют массу, приходящуюся на единицу объёма, т.е.
ρ = m / V
Масса образца породы (m п) состоит из массы твёрдой фазы (m т), жидкости (m ж) и газа (m г). Объём образца складывается также из объёма твёрдой фазы (V т), жидкой (V ж) и газовой (V г).
Следовательно:
ρ = m т + m ж + m г / V т + V ж + V г
Отношение массы твёрдой фазы породы к занимаемому её объёму называют минералогической плотностью:
ρ м = m т / V т
При проведении ГТИ определяется обычно объёмная плотность в г/см3,
ρ = m в * ρ ж / V
где тв – масса влажного образца, г;
V – объём образца, см3;
ρ ж – плотность насыщающей образец жидкости, г/см3 (обычно принимают
ρ ж =1 г/см3)
и минералогическая плотность
ρ м = m с / V с
где Vc – объём сухого образца, см3
Vc = V -(m в -тс)/ ρ в,
где тс -масса сухого образца, г.
Величина плотности горных пород изменяется в широких пределах для различных типов горных пород и зависит от минерального состава, плотности слагающих породу минералов, пористости породообразующих минералов, плотности жидкости и газов заполняющих её поровое пространство, структурно-текстурных особенностей породы и др. Значения плотности основных осадочных пород приведены в табл. 4.
С глубиной плотность горных пород возрастает, так как она обусловлена, главным образом, пористостью. Такая закономерность наиболее характерна для глинистых пород. При отсутствии зон АВПоД плотность глин закономерно возрастает с глубиной, а при их наличии эта закономерность нарушается за счёт зон разуплотнённых глин.
Общая, открытая и эффективная пористость
Пористость горных пород, слагающих коллектор, представляет собой совокупность пространств, заключённых между частицами твёрдой фазы, формирующей породу. По условиям образования пористость подразделяют на первичную и вторичную. Первичная пористость образуется в процессе отложений материала, вторичная – возникает при некоторых геологических процессах, следующих за процессом осадконакопления. Первичная пористость может быть межзерновой, характерной для терригенных пород, и межкристаллической, присущей карбонатным породам. Вторичная пористость образуется за счёт растрескивания, процессов растворения и выщелачивания, характерных для карбонатных пород. Пористость зависит не только от укладки зёрен породы, но и от их формы, распределения по размерам, наличия глинистого и цементирующего материала.
Различают общую, открытую, закрытую и эффективную пористость. Иногда оперируют трещинной и кавернозной пористостью.
Общая пористость включает в себя открытую и закрытую пористости и определяется совокупностью всех пустот в минеральном скелете породы и представляет собой отношение объёма пор в образце (V п) к объёму образца (V), т.е. коэффициент открытой пористости будет
Kn = V п / V
Коэффициент открытой пористости определяется как отношение объёма открытых пор в образце породы (Vn . o .) к объёму образца, т.е.
Kn . o . = V п. o . / V
Закрытая пористость определяется объёмом изолированных пустот в образце породы.
Пористость горных пород – это совокупность пор, каверн и трещин, заключённых между частицами твёрдой (скелетной) части породы.
В зависимости от размера пор различают мегапоры (>10 мм), сверхкапиллярные (0,1-10 мм), капиллярные (0,001-0,1 мм) и субкапиллярные (<0.001 мм). Подавляющая часть субкапиллярных пор не пропускает жидкость при градиентах давлений, наблюдаемых в природе.
Конфигурация пор крайне разнообразна.
Эффективная пористость определяется объёмом порового пространства (V п.д), по которому может происходить передвижение пластового флюида при перепадах давления встречающихся в природе.
Коэффициент эффективной пористости рассчитывается по формуле
K эф = V п.д / V
Пористость пород-коллекторов с глубиной залегания пласта уменьшается, вследствие уплотнения породы под действием давления вышележащих слоёв, а также геотектонических сил. Влияние давления и температуры неодинаково на породы с различным литологическим составом, плотностью, минеральным составом, насыщенностью пластовыми водами, степенью цементизации зёрен и т.д.
При выносе керна на поверхность, когда происходит снижение пластового давления до атмосферного, а пластовой температуры до температуры окружающей среды, коэффициент пористости увеличивается, что необходимо учитывать.
Величина пористости горных пород изменяется в широком диапазоне: от долей процента (магматические породы) до 40% (глины в зонах АВПоД, газоносные песчаники). Наиболее распространённое значение пористости песчаников Русской платформы 17-24%.
Пористость горных пород терригенного типа с увеличением глубины залегания снижается почти по линейной зависимости. И на глубине 5-6 км редко превышает 3-4%. Пористость карбонатных пород с глубиной также уменьшается но нелинейно и величина пористости, на больших глубинах, может достигать 8-10% и более за счёт возрастания доли вторичной пористости, трещин и каверн (месторождения Прикаспийской впадины и Северного Кавказа).
Изучение коллекторских свойств горных пород на больших глубинах, показывает наличие мощных зон (до 500-800 м) вторичной пористости, обусловленных выщелачиванием карбонатных минералов под агрессивным воздействием углекислого газа и углеводородных газов в водорастворимой фазе, мигрировавших по разломам и трещинам в глубокопогружённые зоны низкопористых коллекторов с нарушенной стабильностью термодинамического равновесия (температура 150-2000С и давление 60-70 МПА). В этих природных условиях карбонатные минералы легко переходят в пластическое состояние и быстро растворяются. В формировании вторичной пористости участвуют также каолинизация глинистых материалов, микротрещинноватость, доломитизация и другие факторы.
С увеличением глубины залегания пород-коллекторов их промышленная значимость во многом зависит не только от величины общей пористости пород, а также от степени их трещиноватости и проницаемости.
глины |
песчаники |
3.6.2. Происхождение АВПД
Основные причины образования АВПД - естественные причины, скорость и условия осадконакопления, тектоника (палеодаления, разломы, надвиги, складки, диапиризм и др.), тепловое расширение, преобразования минералов, диагенез глин, органические преобразования.
3.6.3. Признаки АВПД
Признаки приближения и вхождения в зону АВПД
Основные характерные признаки | Вскрываемый разрез | ||
Барьер давления | Переходная зона (АВПоД) | Зона АВПД | |
Градиент температуры раствора на выходе | - | + | + |
Скорость проходки | - | + | + |
Признаки неустойчивости ствола скважины | - | + | 0 |
Уровень раствора в емкостях, скорость потока на выходе | 0 | 0(+) | + |
Угроза выброса раствора и пластового флюида или поглощения раствора | 0 | 0 | + |
Плотность раствора на выходе | 0 | 0(-) | - |
Газосодержание раствора | 0 | + | + |
Флюидные коэффициенты – отношение легких УВ к тяжелым УВ | 0 | - | + |
Количество шлама на вибросите | - | + | 0(+) |
Размер частиц шлама | - | + | 0 |
Плотность шлама | + | - | 0(-) |
Газонасыщенность шлама | 0 | + | + |
Общая пористость пород | - | + | 0 |
Открытая пористость пород | - | 0 | + |
Примечание – изменение параметров относительно нормального изменения с глубиной:
0 - параметр не меняется, - - уменьшение параметра;
+ - увеличение параметра; () - возможное изменение параметра.
3.6.4. Методы определения АВПД
3.6.4.1. Прямой метод – испытание пласта.
3.6.4.2. Оценочные методы – 1) по величине избыточного давления на устье закрытой скважины (+ гидростатическое давление); 2) по величине давления начала поглощения (теоретическая верхняя граница пластового давления); 3) по эквивалентной плотности бурового раствора (с учетом гидродинамических давлений) на момент поступления газа из пласта в скважину.
3.6.4.3. Косвенные методы (методы в процессе бурения)
Физическая основа методов – рост скорости разбуривания зон с аномально-высокми пластовыми и поровыми давлениями за счет снижения прочности породы (низкая плотность, высокая пористость) и снижения дифференциального давления в системе скважина-пласт.
При оценке скорости проходки следует учитывать:
· Изменение режима бурения,
· влияние износа долота
· влияние плотности раствора
· влияние литологии и прочих характеристик пород.
Все влияния учитываются в различных моделях бурения. Наиболее распространенный способ – d-экспонента.
3.6.5. Методы определения давления гидроразрыва пород
3.6.5.1. Прямой метод – тест на утечку – закачка в закрытую скважину раствора на малом расходе с контролем и регистрацией объема закачки и давления в скважине. Испытание проводится для первого вскрытого пласта ниже башмака обсадной колонны.
3.6.5.2. Косвенные методы определения градиента разрыва
· Метод Хабберта и Уиллиса
grad Pгр = К* (grad Pгор - grad Pпл) + grad Pпл; К= 1/3 или К=1/2 –1/4
Недостаток – возможное занижение градиента в зонах АНПД и завышение в зонах АВПД
· Метод Мэтьюза и Келли
grad Pгр = К* (grad Pгор - grad Pпл). + grad Pпл; К – коэффициент эффективного напряжения, определяется методом эквивалентных глубин для разуплотненных зон по эмпирической зависимости К от глубины для данного региона.
· Метод Итона
grad Pгр = К* (grad Pгор - grad Pпл) + grad Pпл; К=m / (1-m), m - коэффициент Пуассона для горных пород, m = 0,2-0,45. Требуется знание регионального коэффициента Пуассона. Определяется на базе фактических данных о гидроразрывах.
· Метод Кристмана (модификация метода Итона для морских месторождений)
grad Pгор = (ρводы* hводы + ρпор*Нскв)/ hводы + Нскв;
ρводы и hводы – плотность и высота столба морской воды.
ρпор – средневзвешенная плотность пород в скважине
· Метод Чезароне – учитывает влияние механического поведения пород на гидроразрыв.
1. для высокопластичных пород (глины, соли, мергели)
grad Pгр =grad Pгор;
2. для низкопроницаемых песков и песчаников
grad Pгр = 2m / (1-m) * grad Pгор + grad Pпл;
3. для высокопроницаемых упругих пород с глубоким проникновением фильтрата
grad Pгр = 2m * grad Pгор + grad Pпл;
m = 0,25 – чистые пески, нетрещиноватые известняки на небольших глубинах
m = 0,28 – глинистые песчаники на больших глубинах.