.


:




:

































 

 

 

 


Task 1. Read, translate the text and do the exercises.




Ecological niche

In ecology, a niche is a term with a variety of meanings related to the behavior of a species living under specific environmental conditions. The ecological niche describes how an organism or population responds to the distribution of resources and competitors (for example, by growing when resources are abundant, and when predators, parasites and pathogens are scarce) and how it in turn alters those same factors (for example, limiting access to resources by other organisms, acting as a food source for predators and a consumer of prey).

The notion of ecological niche is central to ecological biogeography, which focuses on spatial patterns of ecological communities. Species distributions and their dynamics over time result from properties of the species, environmental variation, and interactions between the two in particular the abilities of some species, especially our own, to modify their environments and alter the range dynamics of many other species. Alteration of an ecological niche by its inhabitants is the topic of niche construction.

The majority of species exist in a standard ecological niche, but there are exceptions. A premier example of a non-standard niche filling species is the flightless, ground-dwelling kiwi bird of New Zealand, which feeds on worms and other ground creatures, and lives its life in a mammal niche. Island biogeography can help explain island species and associated unfilled niches.

Grinnellian niche

The ecological meaning of niche comes from the meaning of niche as a recess in a wall for a statue, which itself is probably derived from the Middle French word nicher, meaning to nest. The term was coined by the naturalist Roswell Hill Johnson, but Joseph Grinnell was probably the first to use it in a research program in 1917, in his paper "The niche relationships of the California Thrasher".

The Grinnellian niche concept embodies the idea that the niche of a species is determined by the habitat in which it lives and its accompanying behavioral adaptations. In other words, the niche is the sum of the habitat requirements and behaviors that allow a species to persist and produce offspring. For example, the behavior of the California Thrasher is consistent with the chaparral habitat it lives init breeds and feeds in the underbrush and escapes from its predators by shuffling from underbrush to underbrush. Its 'niche' is defined by the felicitous complementing of the thrasher's behavior and physical traits (camouflaging color, short wings, strong legs) with this habitat.

This perspective of niche allows for the existence of both ecological equivalents and empty niches. An ecological equivalent to an organism is an organism from a different taxonomic group exhibiting similar adaptations in a similar habitat, an example being the different succulents found in American and African deserts, cactus and euphorbia. As another example, the Anolis lizards of the Greater Antilles are a rare example of convergent evolution, adaptive radiation, and the existence of ecological equivalents: the Anolis lizards evolved in similar microhabitats independently of each other and resulted in the same ecomorphs across all four islands.

Eltonian niche

In 1927 Charles Sutherland Elton, a British ecologist, defined a niche as follows: "The 'niche' of an animal means its place in the biotic environment, its relations to food and enemies. "

Elton classified niches according to foraging activities ("food habits"): "For instance there is the niche that is filled by birds of prey which eat small animals such as shrews and mice. In an oak wood this niche is filled by tawny owls, while in the open grassland it is occupied by kestrels. The existence of this carnivore niche is dependent on the further fact that mice form a definite herbivore niche in many different associations, although the actual species of mice may be quite different."

Conceptually, the Eltonian niche introduces the idea of a species' response to and effect on the environment. Unlike other niche concepts the Eltonian niche emphasizes that a species not only grows in and responds to an environment based on available resources, predators, and climatic conditions, a species may also change the availability and behavior of those factors as it grows. In an extreme example, beavers require certain resources in order to survive and reproduce, but also construct dams that alter water flow in the river where the beaver lives. Thus, the beaver affects the biotic and abiotic conditions of other species that live in and near the watershed. In a more subtle case, competitors that consume resources at different rates can lead to cycles in resource density that differ between species. Not only do species grow differently with respect to resource density, their own population growth can lead to different effects on resource density over time.

Hutchinsonian niche

The niche concept was popularized by the zoologist G. Evelyn Hutchinson in 1957. Hutchinson wanted to know why there are so many types of organisms in any one habitat. His work inspired many others to develop models to explain how many and how similar coexisting species could be within a given community, and led to the concepts of 'niche breadth' (the variety of resources or habitats used by a given species), 'niche partitioning' (resource differentiation by coexisting species), and 'niche overlap' (overlap of resource use by different species).

An organism free of interference from other species could use the full range of conditions (biotic and abiotic) and resources in which it could survive and reproduce which is called its fundamental niche. However, as a result of pressure from, and interactions with, other organisms (i.e. inter-specific competition) species are usually forced to occupy a niche that is narrower than this, and to which they are mostly highly adapted. This is termed the realized niche. Hutchinson used the idea of competition for resources as the primary mechanism driving ecology, but overemphasis upon this focus has proved to be a handicap for the niche concept. In particular, overemphasis upon a species' dependence upon resources has led to too little emphasis upon the effects of organisms on their environment, for instance, colonization and invasions.

Hutchinson's "niche" (a description of the ecological space occupied by a species) is subtly different from the "niche" as defined by Grinnell (an ecological role, that may or may not be actually filled by a species).

A niche is a very specific segment of ecospace occupied by a single species. On the presumption that no two species are identical in all respects (called Hardin's 'axiom of inequality') and the competitive exclusion principle, some resource or adaptive dimension will provide a niche specific to each species. Species can however share a 'mode of life' or 'autecological strategy' which are broader definitions of ecospace. For example, Australian grasslands species, though different from those of the Great Plains grasslands, exhibit similar modes of life.

Once a niche is left vacant, other organisms can fill that position. For example, the niche that was left vacant by the extinction of the tarpan has been filled by other animals (in particular a small horse breed, the konik). Also, when plants and animals are introduced into a new environment, they have the potential to occupy or invade the niche or niches of native organisms, often outcompeting the indigenous species. Introduction of non-indigenous species to non-native habitats by humans often results in biological pollution by the exotic or invasive species.

The mathematical representation of a species' fundamental niche in ecological space, and its subsequent projection back into geographic space, is the domain of niche modelling.

(Retrieved from: https://en.wikipedia.org/wiki/Ecological_niche)

 

Glossary

Predator

Competitor , ,

Distribution ,

Prey ,

Offspring

Indigenous , ,

 

Word study





:


: 2018-11-12; !; : 186 |


:

:

, ; , .
==> ...

1922 - | 1712 -


© 2015-2024 lektsii.org - -

: 0.028 .