Векторы. Действия над векторами.
Вектором наз. упорядоченная совокупность чисел Х ={X1,X2,...Xn} вектор дан в n-мерном пространстве. Т(X1,X2,X3). n=1,2,3. Геометрический вектор - направленный отрезок. | AB |=| a | - длинна. 2 вектора наз. коллинеарными, если они лежат на 1 прямой или ||-ных прямых. Векторы наз. компланарными, если они лежат в 1-ой плоскости или в ||-ных плоскостях. 2 вектора равны, когда они коллинеарны, сонаправленны, и имеют одинак-ую длинну.
1.умножение на число: произведение вектора А на число l наз. такой вектор В, который обладает след. св-ми: а) А || В. б) l>0, то А В, l<0, то А ¯ В. в)l>1, то А < В,)l<1, то А > В. 2. Разделить вектор на число n значит умножить его на число, обратное n: а /n= a *(1/n).
3.Суммой неск-их векторов а и в наз. соединяющий начало 1-го и конец последнего вектора. 4. Разностью векторов а и в наз-ся вектор c, который, будучи сложенным с вектором в даст вектор а.
Декартова прямоугольная система координат. Базис.
Базисом на плоскости называется совокупность фиксированной точки и 2х неколлинеарных векторов, проведенных к ней.
Базисом в пространстве наз. совокупность фиксированной точки в пространстве и 3х некомпланарных векторов.
Любой вектор на плоскости может быть разложен по векторам базиса на плоскости. Любой вектор в пространстве может быть разложен по векторам базиса в пространстве.
ОС = OA + OB, OA =x* i, OB =j*y, OC =x i +y j. Числа х,у наз-ся координатами вектора ОС в данном базисе
Действия над векторами.
а =х1 i +y1 j +z1 k; b =х2 i +y2 j +z2 k
l* a =l(х1 i +y1 j +z1 k)= l(х1) i +l (y1) j +l(z1) k
a ± b =(x1±x2) i +(y1±y2) j +(z1±z2) k
ab =x1x2 ii +y1x2 ij +x2z1 ki +x1y2 ij +y1y2 jj + z1y2 kj +x1z1 ik +y1z2 jk +z1z2 kk =x1x2+y1y2+z1z2
ii =1; ij =0; и т.д.
скалярное произведение 2х векторов равно сумме произведений соответствующих координат этих векторов.
аа =x2+y2+z2=| a |2 a {x,y,z}, aa =| a |*| a |, то a 2=| a | 2
ab =|a|*|b|*cosj
а) ав =0,<=> а ^ в, x1x2+y1y2+z1z2=0
б) а || в - коллинеарны, если, x1/x2=y1/y2=z1/z2
Скалярное произведение векторов и его свойства.
-(“skala”-шкала) 2х векторов а и в наз. число, равное произведению длин этих векторов на cos угла между ними. (а, в)- скалярное произведение. а * в =| а |*| в |*cosj, j=p/2, cosp/2=0, a^b=> ab =0. Равенство “0” скаляргного произведения необходимое и достаточное условие их перпендикулярности (ортогональности).
Векторное произведение 2х векторов.
левая ----- правая
Тройка векторов а, в, с наз. правоориентированной (правой), если с конца 3го вектора с кратчайший поворот от 1го ко 2му вектору мы будем видеть против час. стрелки. Если кратчайший поворот от 1го ко 2му по час. стрелки - левая. Векторным произведением 2х векторов а и в наз. такой вектор с, который удовлетворяет условиям: 1. | c |=| a |*| b |*sinj. 2. c ^ a и c ^ b. 3. тройка а, в, с -правая.
Смешанное произведение векторов и его свойства.
Смешанным произведением векторов наз. векторно-скалярное произведение, являющееся числом: a * b * c =[ a * b ]* c = a *[ b * c ], где
a ={ax,ay,az}
b ={bx,by,bz}
c ={cx,cy,cz}
Св-ва:
1. При перестановке 2х сомножителей:
a * b * c =- b * c * a
2. не меняется при перестановке циклических сомножителей:
a * b * c = c * a * b = b * c * a
3.а)(Геометрич. смысл) необходимым и достаточным условием компланарности 3х векторов явл. равенство a * b * c =0
б)если некомпланарные вектора a, b, c привести к 1 началу, то | a * b * c |=Vпараллепипеда, построенного на этих векторах
если a * b * c >0, то тройка a, b, c - правая
если a * b * c <0, то тройка a, b, c - левая