Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Что делать, если вы замерзаете




 

Все вышесказанное об основах навигации предполагает, что вы все еще живы и в момент сбоя системы способны передвигаться. В конце концов, если вы не можете двигаться, то не имеет значения, знаете ли вы, куда идти. Но что если вы оказались немобильны в месте, где нет укрытия, герметизированного планетохода или мешка? Тогда вам скоро придется в полной мере вкусить все удовольствия марсианской ночи.

Уверен, вы слышали байки об исследователях и других путешественниках, у которых сломались средства передвижения и закончилась еда: их в итоге нашли в виде скульптур – присевших, упавших или прилегших на камни в легкий 90‑градусный мороз. Некоторые из этих ужасающих историй действительно правдивы – вы и сами можете полюбоваться на эти статуи, лучшие из которых находятся в постоянной экспозиции кладбища Нью‑Плимута. Не хочу быть грубым, но все же: всех этих людей подобная участь настигла потому, что они были непроходимо глупы.

Ребят, ну действительно, нужно понимать: ночью в космическом костюме да по пересеченной местности вы далеко не уйдете. Неужели трудно догадаться, что лучше оставаться на месте и вызвать помощь? Хорошо, скажете вы, в некоторых случаях чертов коммуникатор и система навигации тоже ломаются и просто так на помощь позвать нельзя. Поэтому разве не правы они были, отправляясь в такой ситуации в ночной поход? Несмотря на все, некоторые умудрились остаться живыми. Конечно, кое‑кто из этих выживших имел право попробовать свои силы, поскольку знал, что делал, – тогда как остальные были неправы, но им повезло. Признаю, иногда два этих типа трудно отделить друг от друга (хотя обычно они резко различаются). Но все мертвецы, очевидно, ошибались, иначе не превратились бы в скульптуры.

 

Марсианский уголок тупиц. Рисунок Майкла Кэрролла

 

Единственный случай, в котором можно решаться на ночную вылазку, это когда вы знаете, что укрытие уже близко, знаете, где оно и как туда попасть, и у вас есть хороший источник света с полным зарядом энергии. Последний нужен обязательно, поскольку, хоть у Марса и две луны, они очень малы для обеспечения достаточного освещения. Поэтому на поверхности планеты ночью царит тьма кромешная, и если вы попробуете прогуляться без фонаря, то обязательно будете постоянно падать – пока не сломаете лицевой щиток и не умрете от резкой асфиксии и разгерметизации или не остановитесь отдохнуть и не замерзнете насмерть. Для фонарей нужно огромное количество резервной энергии, ибо если вы не используете супердорогие батареи НАСА для открытого космоса, в которых имеются уже установленные радиоизотопные элементы, придется потратить огромное количество энергии на обогрев самого источника питания. Иначе он замерзнет и перестанет функционировать, погрузив вас в темноту.

Если ваш случай далек от идеального, описанного выше, лучше всего оставаться рядом со своим планетоходом. Самый мелкий мотоцикл или вездеход обычно имеет в баке достаточное количество остаточного топлива и окислителя, чтобы можно было подключить и зарядить обогреватели скафандра на повышенной передаче. И даже если его топливные отсеки пусты, их можно использовать для спасения своей жизни, содрав с них многослойную изоляцию и завернувшись в нее.

Должен сказать, многослойная изоляция – отличная вещь. Это просто несколько слоев тонкой двойной алюминированной майларовой пленки с небольшими отверстиями тут и там, из‑за чего она кажется легкой. Но в вакууме или в разреженной атмосфере Марса она прекрасно удерживает тепло. Обмотайтесь ею в 20–30 слоев, как мумия, и ваше тело будет само себя согревать. Только убедитесь, что пальцы на ногах и руках (а также другие выступающие части тела) тоже хорошо обернуты – иначе к утру можете не обнаружить их на месте. Еще очень важно удостовериться, что выхлоп вашей системы жизнеобеспечения направлен наружу, а не во всю эту обмотку. В противном случае, пар, который вы выдыхаете, замерзнет между слоями изоляции, превратив «мумию» в кокон вечной мерзлоты. Это может не только вас полностью обездвижить, но и полностью испортить внешний вид вашей статуи, сделав ее непригодной для последующей демонстрации на кладбище Нью‑Плимута.

 

Один и без воды

 

Альтернативный сценарий кошмара: застрять в пустыне с подходящим для выживания укрытием, но без воды. В среднем человеческому существу жизненно необходим килограмм воды в день и глотнуть хотя бы немного ее раз в двое суток. На Земле заблудившийся путник часто может найти источник или озеро с достаточным количеством воды, но на Марсе таких водоемов нигде нет. Каковы же ваши шансы на выживание?

На самом деле вам потребуется лишь немного изобретательности. Если вы прислушивались к моим советам, то выбрали для скафандра и планетохода метанол‑кислородный источник питания. При совмещении метанола с кислородом для производства энергии в виде отходов он вырабатывает воду и углекислый газ. При этом воды – 45 %. То есть, если на вас надет костюм с источником питания, бак которого вмещает 2 кг метанола, то при наличии 3 кг кислорода в запасе можно синтезировать достаточное на два дня количество воды. После чего вам останется еще три дня на спасение или смерть от жажды. Если в баках планетохода имеются остатки топлива и окислителя, потенциально можно использовать такой подход даже дольше. Полученная вода будет содержать значительное количество углекислого газа, поэтому НАСА запретила системы, которые отводят водные отходы обратно во флягу скафандра. Тем не менее, несмотря на возможные медицинские проблемы, в XX веке очень многие пили такую воду, исходя из своих предпочтений – и даже наладили ее промышленный выпуск (я не придумываю). Ее действительно можно пить, поэтому перед серьезными работами на поверхности планеты модифицируйте свой скафандр для выполнения таких операций. (В подсобке мастерской Шерил на западе космопорта Нью‑Плимута есть хорошие мастера, которые также могут прокачать приемник Марсианской глобальной системы позиционирования. Скажите, что вы от меня, и получите скидку 10 %.)

Если вы не можете позволить себе скафандр с топливным отсеком или планетоход (или вы просто не слушали мои советы), у вас не будет подобного запаса воды. Тогда можно попробовать добыть воду на самом Марсе. Красная планета кажется абсолютно сухой, но близкие к поверхности источники воды просто вымерзли из‑за холода. В результате давление водяного пара здесь на несколько порядков ниже, чем в самых сухих пустынях Земли. Тем не менее воды тут более чем достаточно. Случайные пробы почвы марсианских пустынь содержат 3 % весовой воды, а можно даже найти места, где ее количество в замерзшей почве достигает 60 %. Воду можно заполучить с помощью нагревания, используя две известнейшие технологии – «духовку» и «парник».

«Духовка» работает достаточно предсказуемо. Просто наскребите почвы, включите отопление и получите воду. Понадобится много энергии, потому что просто так поверхностную воду выплавить нельзя, она получается слишком соленой для питья. Ее нужно сначала превратить в пар, а затем конденсировать в опресненном виде. Этот процесс занимает в восемь раз больше энергии, чем простое растапливание. Вопрос в том, где же взять столько энергии? Первый вариант: возить с собой в багажнике складывающуюся солнечную батарею. Если погода ясная, фотоэлектрическая панель площадью 2 квадратных метра днем может генерировать около 100 ватт, которых хватит на выпаривание 1 грамма воды каждые 30 секунд или 1 литра каждые 8 часов.

С другой стороны, это устройство – слишком тяжелое, громоздкое, дорогое, упрямое и привлекательное для воров, чтобы носить его с собой постоянно. Особенно если вы достаточно умны, чтобы использовать легкий вездеход или мотоцикл. Поэтому многие марсиане предпочитают альтернативный метод – «парник».

Тенты для парника – почти ничего не весящие прозрачные эластичные куски ткани, которые могут быть быстро расправлены и расстелены на земле. Они нагревают несколько верхних сантиметров почвы до температуры выше нуля. Учитывая, что под тентом превалирует разреженная марсианская атмосфера, это заставляет освободиться от газа большее количество воды. Если у вас с собой обычный тент для купола диаметром два метра, он покроет площадь в 3,14 квадратных метра. При наличии в почве 3 % воды, в 2 см от поверхности содержится около 9 кг воды. Поток солнечного излучения, попадающий на 3 метра тента, несет около киловатта энергии. Поэтому в вашем распоряжении имеется устройство для медленного нагревания почвы и замещения разреженного марсианского воздуха выпаренной водой. Этот пар потом можно легко собрать, поместив под тент белую медную пластину. Если соединить ее с помощью медной проволоки с другой пластиной снаружи, она будет действовать как обычный «холодный палец» для конденсации пара. Важно иметь достаточное количество таких устройств нужного размера, иначе постоянно поступающий пар может унести ваш тент в небо или взорвать его изнутри, что нам совершенно не нужно. Но при правильной установке такая система работает просто и стабильно, поскольку в ней нет движущихся частей, электрических проводов, программного и другого обеспечения. Конечно, потом нужно будет растопить лед из конденсаторов, но это можно сделать с помощью простого нагревательного контейнера, требующего на порядок меньше энергии, чем «духовка».

Поскольку такие тенты гораздо проще и дешевле фотоэлектрических духовок, основным аэрокосмическим подрядчикам НАСА они активно не нравятся. Поэтому последние требуют от агентства запретить использование тентов – и, вероятно, рано или поздно это произойдет. Но на момент написания этой книги они еще легальны. Поэтому предлагаю вам купить парочку прямо сейчас, ибо позже на черном рынке их цена значительно возрастет.

Но ни тент, ни духовка не спасут вас без яркого солнечного света, а из‑за песчаных бурь его может не быть неделями. Если в такой период вы потеряетесь и окажетесь без воды, придется прибегнуть к крайним мерам и получить воду из самого себя.

Все верно. Вы – источник воды. Фактически, как и все люди. Ведь вода (вместе с углекислым газом) является одним из двух продуктов отхода процесса дыхания. Но вы – свой лучший источник, потому что, если попадете в переплет, только вы сможете себе помочь.

Есть три процесса, в результате которых вы, человек, производите воду: дыхание, мочеиспускание и дефекация. Обсудим потенциал каждого из них.

Поскольку ваши легкие влажные, то и дыхание тоже. И давление водяного пара в нем составляет около 50 миллибар (5 % давления земной атмосферы на уровне моря). Если человек выдыхает примерно 6 л газа в минуту, вместе с ним выходит 0,3 л водяного пара в минуту или 18 л в час – это 360 г воды в марсианские сутки (24,7 часа). Указанную воду можно легко получить, подсоединив конденсатор к выхлопу системы дыхания вашего костюма. Но это только треть необходимого для выживания количества воды.

Дополнительный объем можно добрать с помощью переработки вашей собственной мочи, объем которой сам по себе превышает 1 л в день. Однако в отличие от выдыхаемой воды, которая сразу готова к употреблению, с водой в моче все не так просто.

Юридический отдел моего издательства настоял на том, чтобы я – во избежание ответственности – включил в книгу предыдущее и последующее предложения. Пожалуйста, помните, что ни издательство Random House Inc., ни его преемники или уполномоченные агенты ни при каких обстоятельствах не поощряют питье необработанной или неправильно обработанной мочи и не несут ответственность за последствия, которые могут настигнуть читателя этой книги, если он пренебрежет данным предупреждением.

Чтобы использовать воду из мочи, понадобится переносной дистиллятор – для выпаривания воды и отделения ее от ядовитых составляющих урины. Такие дистилляторы – суть миниатюрные версии системы переработки воды жилого модуля. Они бывают разных размеров, стилей и цветов, новые или бывшие в употреблении. (В этом случае я рекомендую покупку нового прибора, потому что тому, из‑за чего хозяин хочет избавиться от старого, часто существует причина. И она неприятна.) Увы, уменьшение размеров персональных систем очистки по сравнению с бытовыми приводит к сокращению длительности обработки продукта, из‑за чего вода хоть и становится питьевой, все равно имеет запах и привкус урины. Поскольку этот факт не совсем приятен, большинство людей, использующих такие системы, для решения проблемы применяют вкусовые добавки. Я пробовал многие из них, включая «Традиционный вкус», «Бергамот» и «Каджунские специи», но они все не подходят. Теперь я использую старый добрый виски Johnny Walker, и он отлично работает.

И, наконец, вода, получаемая с помощью дефекации. Этот вариант может стать хорошим источником жидкости. Проблема в том, что вода эта тесно связана с фекалиями, которые в полевых условиях находятся в памперсе вашего скафандра. Если у вас с собой есть герметичный кокон, можно снять скафандр и добраться до памперса. Однако процесс передвижения по кокону с таким содержимым в руках может быстро сделать его непригодным к дальнейшей эксплуатации. Поэтому НАСА разработало недорогие полевые устройства для переработки воды из фекалий. Они включают нагревательные элементы в самом памперсе, что позволяет выпаривать воду «не отходя от кассы» – прямо под вашей пятой точкой. Пар собирается в бутылочку‑конденсатор, которая крепится к скафандру сзади, на манер хвостика. После этого можно использовать вкусовые добавки и применять воду в личных целях.

Хотя эта система рекомендуется к использованию Правлением Марса, я не знаю никого, кто бы согласился на это во второй раз.

 

Выживание без кислорода

 

Мы подошли к тому, чего большинство новичков боятся пуще всего. Что если вы застряли на поверхности планеты без кислорода? Вне всяких сомнений, земляне находят это положение ужасным, потому что на их родной планете такого случиться не может. Тем не менее, хотя подобные чувства и можно понять, они иррациональны: ведь кислорода на Марсе вполне достаточно. Нужно просто знать, где его искать.

Наиболее очевидным местом является атмосфера Марса, на 95 % состоящая из углекислого газа. Чтобы получить кислород из CO2, вам нужно просто в обратном реакторе вода‑газ провести его реакцию с водородом при меди на окиси алюминия в качестве катализатора. В результате получим воду и монооксид углерода. Вода подвергается электролизу для получения кислорода и водорода. Последний возвращается в этот реактор для поддержания процесса, а монооксид углерода отправляется в атмосферу в качестве отходов. (На Марсе это можно делать, у нас тут нет агентства по охране окружающей среды). Или, если найдете воду, можно просто подвергнуть ее электролизу и сразу получить кислород.

Эта техника очевидна и крайне проста, но существует проблема: чтобы получить необходимый для выживания 1 кг кислорода в день, электролизеру понадобится, в среднем, около 180 ватт энергии. Если у вас нет с собой радиоизотопного генератора, вам, опять‑таки, понадобится солнечная батарея, способная выработать за световой день около 500 ватт электричества.

Ну, если вы так боитесь нехватки кислорода, можете купить 10 квадратных метров фотоэлектрических панелей и синтезировать свой собственный дыхательный газ – что и происходит, кстати, в системе жизнеобеспечения вашего дома или на центральном заводе по производству кислорода в промышленных масштабах в Нью‑Плимуте. Но зачем тратить такие деньги на столь капризный (и тяжелый) способ, если есть гораздо более дешевый вариант создания кислорода в поле? Ребята, безопасность сама по себе хороша, но какой смысл поддерживать свою жизнь, если вы не можете ею насладиться?

Поэтому забудьте о срочном синтезе кислорода из воздуха или вечной мерзлоты. Есть более простой способ, который отлично работает, и при этом можно использовать сам реголит. Девственная марсианская почва наполнена перекисью водорода: достаточно «разломать» ее и, смочив водой, получить кислород. Этот удивительный факт был открыт в 1976 году спускаемым аппаратом зонда НАСА «Викинг». Он был отправлен на Марс искать жизнь. Один из экспериментов включал в себя увлажнение здешней почвы водой, дабы увидеть: вдруг на ней что‑то вырастет? Ученые были шокированы, когда вместо медленного роста местных растений, почва немедленно ответила на увлажнение струей кислорода прямо в тестовую камеру.

Ну, 1976 год уже канул в Лету, а трюк все равно работает. Если увлажнить необработанную марсианскую почву, получите кислород. Поэтому вместо обратного реактора и 10‑метровой солнечной батареи вам нужен большой пластиковый мешок, лопата и маленький форвакуумный насос. Просто наскребите земли в мешок и полейте ее водой, которую вы уже добыли вышеописанными методами. Для этих целей подойдет даже простая соленая вода, полученная изо льда. Когда кислород начнет шипеть, включите насос, чтобы доставить газ в свой скафандр, и подсоедините его прямо к дополнительному клапану на шлеме. Кислород будет пахнуть сгоревшим порохом, но для дыхания он вполне пригоден. Если запах вас все же беспокоит, в клапан можно вставить маленький фильтр с активированным углем. Когда шипение прекратится, вытрясите мешок, загрузите его новой порцией земли, полейте водой и так далее. Все просто!

 

 

Как создать что угодно

 

Если вы живете в Нью‑Плимуте или его окрестностях, лучше всего заниматься своим сомнительным бизнесом и на полученные дивиденды приобретать необходимые вещи. Но если вы хотите стать частью новых поселений и богатой разными возможностями марсианской саванны, вам понадобятся все навыки первопроходца. Сухопутный транспорт, который может преодолевать большие расстояния, на Марсе очень дорог. А получение прямых поставок с Земли непосредственно на месте приземления возможно только в космопортах Нью‑Плимута, Цандерграда или Тайкоцзина и только для Правления Марса. Более того, если управляющий грузовыми перевозками Союз сестер поймет, что вы пользуетесь его услугами по нужде, а не просто так (ибо бюрократы Правления дают разрешение на официальные перевозки и жаждут еще больше ваших крови и денег), он взвинтит свои цены до небес. Поэтому, если желаете подвизаться пионером Красной планеты и не жертвовать все свои кровно заработанные денежные знаки подобным типам, нужно уметь делать все самостоятельно. И в этой главе я вас научу как.

 

Топливо

 

Помимо кислорода, который система жизнеобеспечения вашего дома сама будет производить из атмосферы с помощью системы вода‑газ, самым важным потребительским ресурсом для каждого пионера Марса служит топливо. Существуют несколько способов его изготовления.

Самое дешевое топливо на Красной планете – окись углерода, или угарный газ. Как мы уже знаем, CO – это побочный продукт реакции конверсии между водой и газом, с помощью которой все получают кислород для дыхания из атмосферного углекислого газа. Таким образом, окись углерода широко доступна и часто рассматривается как отход, но ее можно использовать и как топливо (в сочетании с кислородом) в двигателях внутреннего сгорания, турбогенераторах, ракетных двигателях или даже в топливных элементах, специально созданных для этой цели. Нужно сказать, тем не менее, что это топливо низкого качества, дающее гораздо меньше энергии на единицу своей массы, чем альтернативные варианты. Кроме того, его сложно хранить и оно ядовито. По этой причине никто из значительных фигур на Марсе не использует угарный газ – по крайней мере, не публично (кроме каких‑то экстренных случаев), поскольку это может стать свидетельством финансовой несостоятельности или обычной жадности.

Гораздо более эффективным и все равно легким в производстве топливом является метан. Его можно создать с помощью углекислого газа и водорода в реакторе Сабатье. Последний похож на реактор для конверсии воды и газа – оба работают при температуре 400 °C и давлении в несколько бар. Разве что вместо медно‑алюминиевого катализатора здесь нужен никель (дешево) или рутений с алюминием (надежно). При смене катализатора реактор вместо окиси углерода станет производить метан. (Если вы мне не верите, посмотрите уравнения реакций в конце главы.)

Теперь реакция метанации будет отдавать тепловую энергию, а вы при использовании реактора Сабатье можете отводить ее для своих нужд – включая вытягивание воды из реголита, приготовление еды и работу реакции конверсии воды и газа. В любом случае вы получаете метан (CH4), который представляет собой отличное топливо – в 5,5 раза больше энергии на единицу массы, чем в угарном газе. И его вполне можно использовать без риска финансового позора. Кроме того, вы получаете воду. Ее можно обработать с помощью электролиза и выработать кислород и водород, которые отправляются обратно в реактор для поддержания процесса.

Единственное топливо, перебивающее метан по количеству энергии на единицу массы, – водород. Но чтобы сделать его жидким, нужно понизить его температуру до 20 кельвинов (20 градусов выше абсолютного нуля). Это гораздо сложнее, чем образование жидкого метана (115 К), кислорода (90 К) или даже угарного газа (80 К). Наконец, для этого процесса нужно много электричества и очень дорогое холодильное оборудование. Более того, если у вас получится – на свою голову, – это топливо будет иметь всего 1/14 плотности воды, и его нужно будет поместить в гигантский дорогущий контейнер. Только в нем огромные поверхности обеспечивают достаточную площадь для поддержания низкой температуры, чтобы ваш драгоценный водород никуда не испарился до того момента, когда он понадобится. Поэтому ни один человек с мозгами не использует водородное топливо – и даже НАСА от него отворачивается (кроме случаев самых дорогих и далеких космических экспедиций).

Метан очень хорош как ракетное топливо, поэтому именно его используют все корабли, покидающие космопорт Нью‑Плимута и отправляющиеся с Марса на орбиту и с орбиты к Земле. Если вы когда‑нибудь займетесь работой вдали от дома, то с его помощью сможете перепрыгнуть туда на своей межконтинентальной баллистической ракете. И даже будучи обычным исследователем, вам придется чем‑то заправлять свои разведывательные беспилотники. Еще метан можно использовать в двигателях внутреннего сгорания или газотурбинных двигателях планетохода. Последний вариант особенно привлекателен, если для вашего бизнеса нужно средство передвижения более быстрое, чем машины представителей Правления.

Тем не менее для обычных наземных вездеходов предпочтительнее метанол‑кислородные баки. Этому есть ряд причин, включая долгое время работы двигателя при использовании низкотемпературной системы питания, легкость работы с метанолом и переработку полученной в результате воды. Но самая главная состоит в огромных преимуществах, взаимодействии и дополнительной страховке, которую дает одинаковая для скафандра и планетохода система питания. Поэтому вы также должны знать, как синтезировать метанол (CH3OH). Это можно сделать, наполнив реактор медно‑цинковыми окисленными шариками, нагрев его до 250 °C и добавив угарный газ CO и водород при давлении 20 бар.

Соедините две молекулы водорода с одной молекулой угарного газа и получите метанол. В общем, идея такова. К несчастью, вся реакция на этом не заканчивается. Чтобы отправлять оставшиеся газы обратно в реактор снова и снова, пока все они не будут использованы, вам нужен насос рециркуляции. Но если вы озаботитесь обеспечением этого процесса, то без проблем получите весь метанол, необходимый для приведения в движение вашей машинки когда угодно.

 

Взрывчатые вещества

 

Если можно сделать топливо и окислитель, то можно изготовить и взрывчатое вещество, которое пригодится при добыче минералов, рытье ям или как потенциальный аргумент в судебной тяжбе. На Земле устойчивую взрывчатку делают, смешивая топливный порошок с твердым окислителем – например, с нитратом или перхлоратом. Химия синтеза последнего несколько сложна, поэтому на Марсе мы предпочитаем чистый кислород в виде сжатого газа или в жидкой форме сразу смешивать с топливом. Так, можно наполнить бутылку, выдерживающую давление в 360 бар, кислородом под давлением в 240 бар и метаном – в 120 бар – и сделать отличную бомбу. Лучших результатов можно добиться, если использовать жидкие кислород и метан (смешанные в пропорции 2:1 моль или 4:1 по массе): получив преимущество из‑за высокой плотности жидкой фазы, в бутылку того же размера можно «упаковать» в три раза больше взрывчатого вещества. Такие метан‑кислородные криобомбы дают вдвое больше мощности на единицу массы, чем тротил. Однако они не используются на Земле, поскольку нестабильны и могут быть задействованы малейшим движением или искрой (как и все системы со сжатым газом), и потому нянечки родной планеты находят их неприемлемыми.

Обратите внимание: издательство Random House Inc., а также все его дочерние предприятия, подконтрольные компании, посредники или правопреемники не рекомендуют создание или использование метан‑кислородных взрывчатых веществ на газообразной или жидкой основе на любой планете и при любых обстоятельствах и не несут ответственность за последствия, причиненные любому читателю или читателем этой книги.

Тем не менее эта проблема легко решается применением двухкамерной системы, в которой каждый из реагентов до момента использования содержится в отдельном контейнере, после чего открывается клапан и происходит смешивание веществ. Только после этого система становится снаряженной и очень опасной. Но это ненадолго, потому что после смешивания она взрывается. Что может быть безопаснее?

 

Пластик

 

Согласно старой и мудрой поговорке, «Под одеждой мы все голые» – именно поэтому нам нужно ее носить. Хотя на Земле еще остались отдельные эксцентричные личности, как варвары, предпочитающие заворачиваться в части кожного покрова других живых существ, на Марсе почти вся одежда сделана с использованием цивилизованных синтетических технологий. Пластик также нужен для создания мебели, спального места, стола, мусорных корзин, контейнеров для хранения, легких запчастей и сотен других полезных предметов. Так что, если вы не простофиля, вынужденный выкидывать уйму денег на импортируемое нижнее белье, сумки и стулья или не хотите жить обнаженным жлобом на полу немеблированного замусоренного отсека, то должны уметь синтезировать пластик.

Самые важные пластмассы, которые должен уметь делать пионер, – это полиэтилен и полипропилен. Первый нужен для большинства обычных вещей, включая мусорные пакеты, пластиковые контейнеры и низкопрочные детали. Для более качественного оборудования и хороших синтетических тканей лучше использовать второй. Обе пластмассы создаются с помощью одной и той же базовой химической технологии.

Начнем с реакции метанола с самим собой для получения диметилэфира: химическая формула – (CH3)2O, но мы зовем его просто ДМЭ.

Реакция создания ДМЭ высвобождает некоторое количество энергии, но от нее можно легко избавиться с помощью реактора с температурой 400 °С и давлением 1 бар, наполненного дешевым гамма‑глиноземом. Готовый ДМЭ достаточно полезен и сам по себе, поскольку может стать отличным полностью сгорающим дизельным топливом, которое, в отличие от земных нефтехимических или биодизельных вариантов, не замерзает при марсианских температурах. Тем не менее сейчас нас интересует пластик, поэтому продолжим. Следующий шаг – скормить ДМЭ следующему реактору, заполненному обычным цеолитным катализатором ZSM‑5 (катализатор, запатентованный компанией Mobil). При температуре 400–450 °С и давлении 1–2 бара можно превратить ДМЭ в этилен (C2H4 при низком давлении) или пропилен (C3H6 при высоком). Если далее нагревать любое из этих веществ при высоком давлении, они полимеризуются и примут вид полиэтилена или полипропилена соответственно.

Готовый пластик можно заставить принять какую угодно форму, сделать из него нити и выткать ткань любого стиля и цвета. (Я рекомендую буро‑красный, потому что он совпадает с цветом пыли и не такой маркий). Зачем платить другим за те вещи, которые можно легко сделать дома?

 

Кирпичи и керамика

 

Хотя почти все новые поселения начали использовать готовые жилые блоки, рано или поздно вы захотите расширить свои владения и построить новые здания. Для этих целей вам нужны искусственные строительные материалы. На Марсе, как и в безлесых районах Земли вот уже 5000 лет, самым простым для производства является кирпич.

Сделать его легко. Все, что нужно, это хорошо утрамбовать почву или пыль, увлажнить, поместить в форму под низким давлением и запечь. В магазине S&R вам попытаются продать красивую высокотемпературную электрическую обжигательную печь, но она не нужна. Прекрасные кирпичи можно делать и в 300‑градусной духовке, питаемой дешевыми солнечными отражателями. Если вам нужны крепкие кирпичи, смешайте почву с нитями ткани от старого парашюта. Их можно купить почти за бесценок в портовых синдикатах, обративших на всеобщее благо свою способность находить посадочные парашюты быстрее Правления Марса. Если вам на самом деле нужна дополнительная прочность обожженных при 900 °С кирпичей, обратитесь в Союз сестер: у него есть возможность поместить материал под систему отвода тепла ядерного реактора Нью‑Плимута. Получившаяся продукция обладает прекрасными строительными качествами, но слегка радиоактивна.

(Обратите внимание: люди, управляющие этим бизнесом, постоянно нуждаются в сотрудниках и в агрессивной манере предлагают новым иммигрантам поработать на них. Не соглашайтесь.)

На Марсе широко встречается гипс – минералогическая форма сульфата кальция. Это хорошо, ибо для того, чтобы получить известь, нужно просто прокалить гипс. А если у вас есть известь, ее можно смешать с почвой мелкого помола и сделать портландский цемент – такого же отличного качества, как и у известного земного производителя.

 

Спускаемые аппараты еще на высоте отстегивают парашюты, и их сносит довольно далеко от поселений. Если парашюты собрать и нарезать, их нити значительно прибавят прочности кирпичам. Рисунок Майкла Кэрролла

 

Если ваше строение не будет отапливаться, можно сделать очень крепкие блоки, просто увлажнив землю и дав ей замерзнуть в форме. Такие вечные ледники могут быть скреплены друг с другом при помощи «водного» цемента, который заморозит их вместе намертво. Это очень простой и дешевый способ постройки зданий – но если их хоть раз обогреть, они превратятся в кучу грязи. Поэтому если вы надумаете покупать кирпичи, убедитесь, что они не являются чем‑то подобным. Впрочем, такая технология может быть полезной для постройки домов на продажу.

Есть еще один важный момент при постройке зданий из кирпича, даже из наиболее обожженного. Кирпич крепок только при сжатии, но у него практически нет прочности на растяжение. Другими словами, в отличие от стали, которая в состоянии выдерживать нагрузку тяжелыми предметами и сопротивляться сильному растяжению, кирпич может только первое, но не второе. Новички обычно упускают эту тонкость из виду и думают о кирпичах, как о «крепком» строительном материале. Он крепок на Земле, потому что там домам не приходится сопротивляться силе, пытающейся растянуть их изнутри. Но на Марсе из‑за внутреннего воздушного давления со зданиями, стоящими вне купола, такое происходит. И если вы попытаетесь создать атмосферу в доме из неармированного кирпича, он просто взорвется. Вам как владельцу помещения это может быть неприятно. Поэтому усвойте урок: кирпичные конструкции нужно держать под давлением. Самый дешевый способ это реализовать – завалить их сверху грязью, используя почву в качестве наружного пресса для кирпичных стен. Так вы нейтрализуете воздушное давление на них изнутри. Чтобы противостоять стандартной домашней атмосфере на Марсе (340 миллибар), нужен слой грязи толщиной 2,473 метра. Конечно, плотность почвы не везде одинакова, поэтому насыпьте побольше – для уверенности.

Глинистые породы на Марсе есть везде, поэтому производство керамики доступно с помощью непосредственно той же техники, что известна на Земле со времен неолита. Поскольку ее создание настолько просто, именно глиняные сосуды широко использовались первыми поселенцами в Нью‑Плимуте. Позже в качестве ежедневной посуды их заменили более прочными пластиковыми, металлическими или стеклянными изделиями. Тем не менее многие находят навыки гончарного мастерства крайне полезными, поскольку предметы своего собственного производства всегда можно выдать бюрократам Правления или официальным лицам НАСА за настоящий антиквариат – и получить с этого свою выгоду. (Для протокола: я против продажи дешевых подделок туристам, поскольку это подрывает рынок. Ради благополучия всего сообщества необходимо, чтобы все участники этого бизнеса скрупулезно поддерживали высокие стандарты правдоподобности и оценивали свой товар соответственно.)

 

Стекло

 

Самый распространенный материал на Марсе – диоксид кремния, SiO2. Составляя почти 40 % обычной марсианской почвы по весу, он является основным компонентом стекла, которое можно, таким образом, изготовить с помощью технологии плавления песка, уже много лет эксплуатируемой на Земле. К несчастью для стеклодувов, вторая наиболее часто встречающаяся составляющая нашей почвы (около 17 %) – окись железа, Fe2O3, также присутствует и в пыли. Этот факт создает проблему, потому что вам нужно чистое стекло. Значит, песок для сырья должен быть хотя бы относительно очищен от железа. Найти такой песок на Марсе сложно. (Но не огорчайтесь: на Луне вообще нет песка. Те идиоты, которые там поселились, имеют дело только с раздробленным камнем.)

Если вы хотите производить оптическое стекло на Марсе, есть два варианта: провести серьезные исследовательские работы на предмет поиска залежей кварца для получения чистого сырья или же удалить окись железа из обычной почвы. Последнее можно сделать довольно дешево – обработав окись железа горячим угарным газом, отходом реактора конверсии. Два вещества в результате этой реакции произведут на свет железо и двуокись углерода, после чего можно удалить первое с помощью магнита. Это трудоемкий процесс, но железо можно сберечь для других целей – например, для создания стали, о чем я поведаю вам уже скоро. (Если производство стали вас не интересует, подумайте о простом заимствовании некоторого количества лишнего освобожденного от железа материала в литейной Правления Марса в Нью‑Плимуте. Тамошние бюрократы до сих пор не поняли, что эти отходы могут быть хорошим сырьем для производства стекла в городских масштабах и оставляют их без присмотра.)

Конечно, не всякое полезное стекло должно быть чистым. Например, красный оттенок готового продукта не повредит, если вам нужно стекловолокно или другой стекловидный строительный материал. Поэтому, если замахнетесь на оптическое стекло, убедитесь, что оно вам действительно нужно или вы продадите его по хорошей цене – чтобы не тратить впустую силы и ресурсы там, где можно обойтись продуктом низкого качества.

 

Металлы

 

Способность производить металлы – основополагающая для любой технологической цивилизации, поэтому вы обязательно должны уметь это делать. К счастью, в этом плане Марс гораздо богаче Земли, поэтому проблем с обеспечением своего хозяйства любым металлом не будет.

 

Сталь

 

Как я уже говорил, самый распространенный промышленный металл на Марсе – железо. Первостепенно используемая коммерческая железная руда на Земле – это гематит (Fe2O3). Этот материал так часто встречается на Марсе, что дал Красной планете свой цвет и, соответственно, имя. Земляне знают, как превратить гематит в чистое железо, еще со времен Троянской войны. Есть, по крайней мере, два отличных способа сделать то же самое на Марсе. В первом, о котором я упоминал ранее, отработанный реактором оксид углерода вырывает кислород из гематита, благодаря чему получаются металлическое железо и углекислый газ. Во втором подходе для реакции с гематитом используется водород, в результате чего получается железо и вода.

Обе эти реакции энергетически почти нейтральны, то есть после начального нагрева реактора для поддержания процесса электричество не требуется. Если вы выберете способ с водородом, то в слив нужно добавить конденсатор, чтобы собрать воду. Таким образом, для создания необходимого для реакции водорода можно проводить электролиз одной и той же воды снова и снова, а единственным расходуемым материалом будет гематит. На Марсе широко встречаются уголь, марганец, фосфор и кремний – четыре основных легирующих компонента стали. Так же, как и специальные компоненты – хром, никель и ванадий. Поэтому после получения железа можно легко сплавить его с соответствующим количеством этих элементов и получить практически любой вид углеродистой или нержавеющей стали.

Угарный газ, как я его люблю! Земные бюрократы в Правлении Марса возражают против него из‑за его ядовитости, но, согласно их утверждению, ядовито все. А суть дела в том, что отходы работы реактора конверсии в виде угарного газа позволяют вам выполнять различные виды металлического литья при низкой температуре, что на Земле в принципе невозможно. Например, можно взять угарный газ и соединить его с железом при температуре 110 °С и получить текучий при комнатной температуре карбонил железа Fe(CO)5. Далее берем его, заливаем в форму и нагреваем до 200 °С, что приведет к его разложению. После этого в форме останется очень крепкое чистое железо, а угарный газ снова высвободится для дальнейшего использования. Еще железо можно сложить слоями, разлагая карбониловый пар. Это позволит создавать полые фигуры любой сложной формы.

Можно синтезировать похожие карбонилы, соединяя угарный газ с никелем, хромом, осмием, иридием, рутением, рением, кобальтом или вольфрамом. Поскольку каждый из них разлагается при несильно различающихся условиях, можно взять смесь металкарбонилов и легко разделить ее на составные части последовательным разложением – по одному металлу за раз.

На Земле есть законы, делающие такой вид продвинутой металлургии почти невозможным на практике, ибо угарный газ и металлические карбонилы вроде бы ядовиты. Но кому какое дело? Просто не вдыхайте эти вещества.

 

Алюминий

 

На Земле вторым по популярности металлом после стали является алюминий. На Марсе он встречается довольно часто, составляя примерно 4 % поверхности планеты по весу. К сожалению, как и на Земле, алюминий обычно встречается в виде жесткой окиси или, как его еще называют, глинозема (Al2O3). Чтобы вычленить алюминий из оксида на Земле его растворяют в жидком криолите (фтористый алюминий) при температуре 1000 °С и затем электролизируют с помощью угольных электродов: по ходу процесса они истрачиваются и оставляют криолит неповрежденным. То же самое можно провернуть и здесь, сделав угольные электроды с помощью пиролизации метана из реактора Сабатье.

Тем не менее, помимо сложности такого процесса, главная его проблема состоит в том, что это черная дыра для энергии (метод эндотермичен, говоря научным языком). Чтобы получить всего один килограмм алюминия, требуется порядка 20 киловаттчасов электричества. Поэтому на Земле алюминиевые заводы располагаются там, где энергия дешевая – например, на Тихоокеанском северо‑западе. На Марсе нет дешевой энергии. При затратах 20 кВт‑час на 1 кг 100‑киловаттный ядерный реактор может произвести всего 123 кг алюминия в сутки.

 

Эффективный метод добычи алюминия. Рисунок Майкла Кэрролла

 

Вот я и говорю: зачем мучиться? Сталь – прекрасный материал для постройки крепких сооружений и, благодаря низкой марсианской гравитации, весит почти столько же, сколько алюминий на Земле. Да, в особых случаях желательно использовать алюминий – например, в электропроводке или как компонент системы корабля, когда необходимы, в первую очередь, его электрическая проводимость или легкий вес. Но для таких ситуаций я рекомендую покупать его в портовых синдикатах, предлагающих широкий ассортимент прекрасных сложных алюминиевых сплавов, использующихся в лишних запчастях покинутых на ночь правительственных средств передвижения.

 

Кремний

 

В современном мире кремний, использующийся при производстве любой электроники, является, пожалуй, третьим по важности после стали и алюминия. На Марсе он имеет даже бо́льшую ценность, поскольку с его помощью можно сделать фотоэлектрические панели и тем самым постоянно увеличивать энергетический запас своего поселка (при условии, что у вас есть простак, готовый регулярно протирать их от пыли). Сырье для производства кремния – диоксид кремния, SiO2 – составляет примерно 40 % поверхности Марса по весу. Чтобы получить кремний, нужно смешать его диоксид с углем и нагреть в электрической печи. В результате реакции «карботермического восстановления», получим чистый кремний и угарный газ.

Опять же, уголь можно получить с помощью пиролизации метана, который вы синтезируете с помощью топливного реактора. Реакция получения кремния поглощает много тепла – хотя и не так много, как реакция синтеза алюминия. Да и общее количество поглощенной в этих процессах энергии невозможно сравнить, ибо в алюминии вы нуждаетесь гораздо меньше.

Для некоторых целей кремниевый продукт реакции карботермического восстановления недостаточно хорош. Например, его можно использовать для создания карбида кремния – крепкого жаропрочного материала (используется в экранах для защиты посадочных аппаратов при их входе в атмосферу). Тем не менее любые остатки гематита в реакторе также будут восстановлены и придадут продукту легкий железный привкус. Чтобы получить очень чистый кремний, пригодный для производства компьютерных чипов и солнечных панелей, нужен еще один шаг: купание грязного кремния в горячем водородном газе, в результате чего кремний превратится в кремневодород (SiH4). При комнатной температуре и выше он имеет форму газа, поэтому его можно легко отделить от гидридов твердых металлов. Затем, если вам нужен самый чистый кремний, нужно отвести газообразный кремневодород с помощью трубы в другой реактор, где и расщепить его при высокой температуре на чистый кремний и водород. Затем можно к кремнию прибавить фосфор или другую примесь и получить полупроводник именно того качества, которое вам нужно.

Интересный исторический факт: столетие тому назад несколько шарлатанов, нанятых НАСА для продажи его лунной программы Конгрессу США, выполнили это задание. Они утверждали, что на Луне можно производить огромное количество кремния и фотоэлектрических панелей, а затем отправлять энергию на Землю для потребителей. В этой идее было много существенных изъянов. Не последний из них заключается в том, что солнечную энергию с тем же успехом, но с гораздо меньшими затратами, можно аккумулировать в пустынях Земли. Да и помимо этого всем должно было быть ясно: хотя диоксид кремния на Луне и широко распространен, там нет угля и водорода, столь необходимых для превращения сырья в кремниевый полупроводник. Да, можно (и нужно) построить систему повторного использования этих реагентов, но на самом деле такие устройства всегда неидеальны, требуют больших вливаний водорода и угля. Если сложить эти факты с тем, что на Луне нет песочного кремния для использования в качестве сырья, становится очевидно: спутник Земли – худшее место для постройки солнечных панелей.

Но НАСА все еще не оставляет надежды.

 

Медь

 

На Марсе медь есть. Она присутствует в почве почти в той же концентрации, что и на Земле. Это не слишком много – примерно 50 частей на миллион. Поэтому, если вам нужно достаточное количество меди, не добывайте ее из почвы. Вместо этого поищите места, где природа сконцентрировала ее в виде медной руды. Коммерчески наиболее важные запасы ее на Земле – это сульфиды меди. То же верно и для Марса. Но здесь сера распространена в большей степени, нежели на Земле, поэтому залежи медной руды принимают форму сульфида меди на основании лавового покрова. Если вы их обнаружите, то сможете легко выделить медную руду с помощью выплавки или выщелачивания, известных на Земле с давних времен.

Фактически единственный способ получить какой‑либо геохимически редкий элемент в нормальном количестве – это разработка его богатой минеральной руды. Но такие руды вы найдете только там, где проходили сложные гидрологические и вулканические процессы, сконцентрировавшие эти элементы. В пределах Солнечной системы такие процессы проистекали только на Земле и на Марсе. Поэтому на Красной планете руда есть, а на Луне нет. Но, в отличие от Земли, за последние 4000 лет лучшие залежи на нашей планете не были разграблены мерзкими первобытными существами, искавшими блестящий металл для производства никчемных безделушек. Это дает таким удачливым парням, как вы, возможность стать первооткрывателем концентрированной руды какого‑нибудь очень редкого металла, ценного для строителей современного общества – или для желающих стать очень‑очень богатыми.

 

 





Поделиться с друзьями:


Дата добавления: 2018-11-11; Мы поможем в написании ваших работ!; просмотров: 176 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2242 - | 2052 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.