Часто на практике мы имеем дело со случайными величинами, распределенными определенным типовым образом, то есть такими, закон распределения которых имеет некоторую стандартную форму. В прошлой лекции были рассмотрены примеры таких законов распределения для дискретных случайных величин (биномиальный и Пуассона). Для непрерывных случайных величин тоже существуют часто встречающиеся виды закона распределения, и в качестве первого из них рассмотрим равномерный закон.
Закон распределения непрерывной случайной величины называется равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение (f (x) = const при a ≤ x ≤ b, f (x) = 0 при x < a, x > b.
Найдем значение, которое принимает f (x) при Из условия нормировки следует, что откуда .
Вероятность попадания равномерно распределенной случайной величины на интервал равна при этом
Вид функции распределения для нормального закона:
Другие виды распределений
Биномиальное распределение.
Для дискретной случайной величины Х, представляющей собой число появлений события А в серии из п независимых испытаний (см. лекцию 6), М (Х) можно найти, используя свойство 4 математического ожидания. Пусть Х 1 – число появлений А в первом испытании, Х 2 – во втором и т.д. При этом каждая из случайных величин Х i задается рядом распределения вида
Xi | 0 | 1 |
pi | q | p |
Следовательно, М (Х i) = p. Тогда
Аналогичным образом вычислим дисперсию: D (Xi) = 0²· q + 1²· p – p ² = p – p ² = p (1 – p), откуда по свойству 4 дисперсии
Закон больших чисел. Предельные теоремы. Неравенство Чебышева. Теоремы Чебышева. Теорема Бернулли.
Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачи-вает случайный характер и становится закономерным (иначе говоря, случайные отклоне-ния от некоторого среднего поведения взаимно погашаются). В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному. Математическая формулировка этого утверждения дается в группе теорем, называемой законом больших чисел.
Неравенство Чебышева.
Неравенство Чебышева, используемое для доказательства дальнейших теорем, справед-ливо как для непрерывных, так и для дискретных случайных величин. Докажем его для дискретных случайных величин.
неравенство Чебышева.
p ( | X – M (X)| < ε) ≥ D (X) / ε². (13.1)
Доказательство. Пусть Х задается рядом распределения
Х | х 1 | х 2 | … | хп |
р | р 1 | р 2 | … | рп |
Так как события | X – M (X)| < ε и | X – M (X)| ≥ ε противоположны, то р (| X – M (X)| < ε) + + р (| X – M (X)| ≥ ε) = 1, следовательно, р (| X – M (X)| < ε) = 1 - р (| X – M (X)| ≥ ε). Найдем р (| X – M (X)| ≥ ε).
D (X) = (x 1 – M (X))² p 1 + (x 2 – M (X))² p 2 + … + (xn – M (X))² pn. Исключим из этой суммы те слагаемые, для которых | X – M (X)| < ε. При этом сумма может только уменьшиться, так как все входящие в нее слагаемые неотрицательны. Для определенности будем считать, что отброшены первые k слагаемых. Тогда
D (X) ≥ (xk + 1 – M (X))² pk + 1 + (xk + 2 – M (X))² pk +2 + … + (xn – M (X))² pn ≥ ε² (pk + 1 + pk + 2 + … + pn).
Отметим, что pk + 1 + pk + 2 + … + pn есть вероятность того, что | X – M (X)| ≥ ε, так как это сумма вероятностей всех возможных значений Х, для которых это неравенство справедливо. Следовательно, D (X) ≥ ε² р (| X – M (X)| ≥ ε), или р (| X – M (X)| ≥ ε) ≤ D (X) / ε². Тогда вероятность противоположного события p ( | X – M (X)| < ε) ≥ D (X) / ε², что и требо-валось доказать.