Определитель матрицы любого порядка равен сумме произведений элементов любой строки (или любого столбца) на их алгебраические дополнения:
по i -й строке i =1, 2, …, n
по j -му столбцу j =1, 2, …, n
Пример:
Дана матрица . Надо вычислить Δ.
По строке:
или
или
По столбцу:
или
или
Обычно для вычисления Δ по 2-му способу выбирается строка или столбец, которые содержат больше нулевых элементов, чтобы уменьшить число слагаемых произведений. Согласно схеме вычислений определителя матрицы n-го порядка по 2-му способу необходимо найти определители для матрицы (n-1)-го порядка. Очевидно, что для их нахождения в свою очередь можно использовать ту же схему вычислений и перейти к нахождению определителей матрицы (n-2)-го порядка. И так далее до тех пор, пока не дойдет до матрицы 3-го или 2-го порядка, для которых мы уже умеем вычислять определители.
Третий способ вычисления определителя
Самый лучший способ вычисления определителя для матриц большой размерности и если элементы являются нецелыми числами, заключается в преобразовании данной квадратной матрицы к треугольному виду, т.е. к такому виду, когда у полученной после преобразования матрицы все элементы сверху или снизу главной диагонали являются нулевыми
.
Определитель искомой квадратной матрицы А равен произведению диагональных элементов полученной треугольной матрицы
.
Преобразование квадратной матрицы к треугольному виду рассмотрим позднее («прямой ход» методом Гаусса).
Действия с матрицами
1. Сумма и разность матриц.
Могут складываться и вычитаться матрицы только одинакового типа.
Из сложения матриц вытекают следующие свойства:
1) А+(В+С)=(А+В)+С;
2) А+В=В+А;
3) А+0=А.
2. Умножение матрицы на скаляр.
Отсюда: 1) 1А=А; 2) 0А=0;
3) α (β А) = (αβ) А; 4) αА + βА = (α+β) А;
5) α (А+В) = αА + αА;
3. Умножение матриц А * В = С.
Перемножать матрицы можно только в том случае, если число столбцов первой матрицы равно числу строк второй матрицы, т.е. g=p, а число строк первой матрицы и число столбцов второй матрицы могут быть любые, т.е. m≠n. Результатом будет матрица С размерностью mn, элементы которой
Для вычисления элемента, стоящего в i-й строке и j-м столбце произведения двух матриц, нужно элементы i-ой строки первой матрицы умножить на соответствующие элементы j-го столбца второй матрицы и полученные произведения сложить.
Свойства:
1) А(ВС)=(АВ)С;
2) α(АВ)=(αА)В;
3) (А+В)=АС+АВ.
4)
Запомнить, что в общем случае 4) АВ≠ВА.
Пример:
В тех частных случаях, когда АВ=ВА, матрицы А и В называются перестановочными. Например, единичная матрица Е перестановочна с любой матрицей А того же порядка.
АЕ=ЕА=А.
Единичная матрица Е играет роль единицы при умножении.
Транспонированная матрица
Если в матрице строки и столбцы поменять местами, то получим транспонированную матрицу.
Свойства:
1) дважды транспонированная матрица равна исходной
А = (А ) = А;
2) (А+В) =А + В;
3) (АВ) =В А, т.е. (АВ) ≠ А В;
4) Если А =А, то матрица А - симметричная
(аij = aji)
Обратная матрица
Обратной матрицей по отношению к данной квадратной, называется матрица, которая, будучи умноженной как справа, так и слева на данную матрицу, дает единичную матрицу. Обозначим для матрица А обратную ей матрицу через А-1.
АА-1=А-1А=Е.
Нахождение обратной матрицы для данной называется обращением данной матрицы.
Квадратная матрица называется неособенной, если ее определитель не равен нулю, в противном случае матрица называется особенной или сингулярной. Обратная матрица имеет только у неособенной матрицы.
Пусть имеем матричное равенство
АС=В.
Умножим правую и левую часть равенства на обратную матрицу А-1
А-1АС= А-1В.
Поскольку известно, что А-1А=Е, то
ЕС= А-1В.
И поскольку известно, что ЕС=С, то
С= А-1В.
То есть, мы равенство АС=В преобразовали в равенство С= А-1В, выразив матрицу С.
Если бы у нас были простые алгебраические числа а, b и с, то аналогичные преобразования были бы следующие: .
Сравнив преобразования для алгебраических чисел и матриц видим, что обращение матрицы соответствует действию деления. Поэтому понятна необходимость в обратной матрице, в ее вычислениях.