Содержание метода и решаемые задачи
Метод приближенного анализа (МПА) [21, 24, 51-54]] пред-назначен для осуществления комплексного анализа систем на предсказуемость поведения в условиях одиночного или множест-венного отказа, составляющих ЭС с заданной степенью детально-сти рассмотрения. МПА является частным случаем МКА, опре-деляемым объемом рассматриваемых связей и случайных воздей-ствий.
Исходными данными для МПА являются:
- представление системы в виде набора элементов, обла-дающих функциональной завершенностью (аналогично, как и для МКА),
- граф рассматриваемых связей между этими элементами, включая как явные (электрические, информационные и т.д.), так и дополнительные связи, определяемые взаимным влиянием эле-ментов, наводками и т.д. (см. п.2.5.4.), при этом граф для МПА является подмножеством графа для МКА, причем объем рассмат-риваемых связей задается разработчиком;
- описание характеристических признаков нормального функционирования ЭС,
- наличие/отсутствие потока случайного и (или) преднаме-ренного воздействия на систему со стороны внешней среды (за-дается разработчиком).
Результатами анализа с использованием МПА являются:
- интервалы значений физической величины, характери-зующей функционирование ЭС, при которых обеспечивается его гарантированная работоспособность;
- перечни последствий (SP) для работы системы в целом, в том числе и перечни возможных новых явлений на выходе сис-темы;
- результаты комплексного анализа (SPP) для случая, когда наряду с непосредственными результатами анализа используется вероятностно-структурная модель.
Основными ограничениями на применение метода являют-ся:
- конечный исчерпывающий перечень рассматриваемых случайных и закономерных воздействий,
- ограничение на число рассматриваемых элементов и свя-зей, определяемое суммарной ресурсоемкостью процедуры ана-лиза, описанной в п.3.9.
Идеология метода заключается в последовательном рас-смотрении всех ЭС как потенциально отказавших с последую-щим анализом влияния этого отказа на все смежные с ним (рас-сматриваются только заданные разработчиком связи) элементы. При этом, случайные воздействия либо не рассматриваются, ли-бо их объем также задается разработчиком.
По результатам последовательного анализа всех ЭС выпол-няется сквозной анализ полученных промежуточных результатов и формируются массивы итоговых результатов.
Математическая модель МПА
Математическая модель МПА будет аналогичной МКА за исключением того, что в качестве рассматриваемых связей будет рассматриваться не весь массив связей, как при применении МКА (когда учитываются как основные непосредственные взаи-модействия ЭС, так и возможные взаимные влияния), а только те связи, которые определяют выполнение основной функции (функций) системы.
Алгоритм реализации МПА
МПА является подмножеством МКА и заключается в том, что вводятся допустимые граничные условия на число и пере-чень рассматриваемых элементов системы, на число и перечень рассматриваемых функций системы, на точность моделирования работы УСС, на объем внешних и внутренних случайных факто-ров, которые принимаются во внимание. При этом возможно применение дополнительных методов определения перечней элементов, функций и точности моделирования, обеспечивающих требуемую предсказуемость работы УСС.
Алгоритм, реализующий метод приближенного анализа представлен на рис.3.2., а описание алгоритма – в табл.3.2.
Также, как и в предыдущем пункте, на начальном этапе раз-работчик должен иметь описание внутренней структуры рассмат-риваемой системы в виде графа, аналогичного приведенного в п.2.2. Затем необходимо сформировать перечни ограничений и допущений, используемых при анализе системы.
Далее применяется алгоритм, похожий на МКА, когда, по-следовательно выбирая в качестве потенциально отказавшего элемента одну из вершин графа, выполняется анализ предсказуе-мости поведения системы согласно алгоритмам, приведенным в главе 2, и с учетом наложенных ограничений и допущений.
На основе результатов этого анализа, полученных для всех ЭС, формируются обобщенные результаты. Как и в предыдущем случае, полезно учесть влияние возможных внешних воздейст-вий, для этого необходимо сформировать массив, состоящий из перечня возможных внутренних и внешних случайных воздейст-вий и диапазона их изменения с учетом накладываемых ограни-чений, а, затем, провести анализ устойчивости ЭС к каждому из перечисленных воздействий, значение которых находится в за-данном диапазоне.
Тогда, алгоритм, представленный на рис.3.2. дополняется алгоритмом, представленным на рис.3.1.б. с учетом накладывае-мых ограничений на число и перечень рассматриваемых факто-ров.
Источниками информации для анализа влияния случайных воздействий могут выступать априорные данные, полученные по результатам предварительных испытаний ЭС на тот или иной тип случайного воздействия.
Достоинством метода являются меньшие, по сравнению с МКА, затраты на анализ.
Недостатком метода является вероятность пропуска факто-ра, влияющего на предсказуемость поведения системы.