Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Элементы схемы, работающие на постоянном токе




 

Конденсатор фильтра. Конденсатор фильтра выбирается достаточно большой емкости для уменьшения пульсаций до приемлемой величины и рассчитывается на достаточное напряжение, чтобы выдержать худший вариант – отсутствие нагрузки и максимальное напряжение сети. Для схемы на рис. 6.17 пульсации составят 1,5 В (двойное ампл. значение) при полной нагрузке. Из опыта проектирования можно рекомендовать использование электролитических конденсаторов, подобных тем, которые используются в ЭВМ (они выпускаются в виде цилиндров с резьбовым выводом с одной стороны), например типа Sprague 36D. На небольшие значения емкостей большинство изготовителей выпускают конденсаторы такого же качества в варианте с осевыми выводами (по одному проводнику торчит с каждого конца), например типа Sprague 39D. Помните о большом допуске значений емкости!

Здесь полезно вернуться к разд. 1.27, где впервые обсуждался вопрос о пульсациях. Всегда, кроме случая импульсных стабилизаторов (разд. 6.19 и следующие), можно прикинуть напряжение пульсаций, считая выходной ток постоянным и равным максимальному току нагрузки. Действительно, вход подключенного к схеме стабилизатора потребляет постоянный ток. Это упрощает расчеты, поскольку разряд конденсатора происходит по линейному закону и не надо возиться с постоянными времени или экспонентами (рис. 6.18).

 

 

Рис. 6.18.

 

Например, вы хотите выбрать конденсатор фильтра для нестабилизированной части источника питания +5 В, 1 А, и предположим, что уже выбрали трансформатор с эффективным значением напряжения вторичной обмотки 10 В, обеспечивающий после выпрямителя 12 В постоянного тока на пике пульсации при полном токе нагрузки. При минимальном падении напряжения на проходном транзисторе стабилизатора на 2 В входное напряжение стабилизатора не должно никогда падать ниже +7 В (знакомая вам ИМС 723 требует +9,5 В, но соответствующие трехвыводные стабилизаторы, описанные ниже, в разд. 6.16, оказываются более покладистыми). Так как надо подстраховаться от возможных отклонений напряжения в сети на 10 % в любую сторону, максимальный размах пульсаций не должен превышать 2 В за период. Тогда 2 В = T (dU / dT) = ТI / С = 0,008 с x 1,0/С, откуда С = 4000 мкФ.

Электролитический конденсатор 5000 мкФ на 25 В – это выбор с подстраховкой из‑за возможного 20 %‑ного допуска значения емкости конденсатора. При выборе конденсатора фильтра не забывайте о следующем: конденсатор излишне большой емкости не только съедает пространство, но и увеличивает нагрев трансформатора (уменьшая угол проводимости и тем самым увеличивая отношение Iэфф / Iср). Кроме того, это увеличивает и нагрузки на выпрямитель.

«Гасящий» резистор с СИД, установленные параллельно выходу на схеме рис. 6.17, разряжают конденсатор за несколько секунд в условиях отсутствия нагрузки. Это полезно, так как, если конденсатор источника питания остается заряженным после того как источник выключен, можно легко повредить какие‑нибудь схемные элементы, ошибочно считая, что напряжения в схеме нет.

Выпрямители. Прежде всего следует отметить, что диоды, применяемые в источниках питания, это совсем не то, что малосигнальные диоды 1N914, применяемые в схемотехнике. Сигнальные диоды рассчитаны на высокое быстродействие (несколько наносекунд), малые токи утечки (несколько наноампер) и малую емкость (несколько пикофарад); они могут выдерживать ток до 100 мА, а напряжение пробоя редко превосходит 100 В. Выпрямительные диоды и мосты, предназначенные для работы в источниках питания, выдерживают ток от 1 до 25 А и более, а напряжение пробоя их ‑ от 100 до 1000 В. У них сравнительно большие токи утечки (от микроампер до миллиампер) и довольно большая емкость переходов. Они не предназначены для высоких скоростей переключения. Перечень ряда широко применяемых типов выпрямителей приведен в табл. 6.4.

Типичными представителями выпрямителей являются устройства серии 1N4001‑1N4007, рассчитанные на ток 1 А, с напряжением обратного пробоя от 50 до 1000 В. Серия 1N5625 рассчитана на 3 А, что является почти наивысшим возможным значением тока для элемента в герметичном корпусе с выводами под печатный монтаж (охлаждение за счет теплопроводности выводов). Популярная серия IN 1183А ‑ типичные сильноточные, оснащенные штыревыми выводами выпрямители, с расчетным током 40 А и напряжением пробоя до 600 В. Популярны и мостовые выпрямители в пластиковых корпусах, монтируемые на печатных платах, с расчетным током 1 и 2 А и монтируемые на шасси, рассчитанные на 25 А и более. Для тех применений, где важно высокое быстродействие (например, преобразователи постоянного тока, см. разд. 6.19), используются диоды с быстрым восстановлением, например одноамперные диоды серии 1N4933. В низковольтных схемах может оказаться желательным использование диодов Шоттки, например серии 1N5823 с прямым падением напряжения менее 0,4 В при токе 5 А.

 





Поделиться с друзьями:


Дата добавления: 2018-11-11; Мы поможем в написании ваших работ!; просмотров: 397 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2340 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.