Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Транзисторный переключатель




 

Рассмотрим схему, изображенную на рис. 2.3.

 

 

Рис. 2.3. Пример транзисторного переключателя.

 

Эта схема, которая с помощью небольшого управляющего тока может создавать в другой схеме ток значительно большей величины, называется транзисторным переключателем. Его работу помогают понять правила, приведенные в предыдущем разделе. Когда контакт переключателя разомкнут, ток базы отсутствует. Значит, как следует из правила 4, отсутствует и ток коллектора. Лампа не горит.

Когда переключатель замкнут, напряжение на базе составляет 0,6 В (диод база‑эмиттер открыт). Падение напряжения на резисторе базы составляет 9,4 В, следовательно, ток базы равен 9,4 мА. Если, не подумав, воспользоваться правилом 4, то можно получить неправильный результат: IK = 940 мА (для типичного значения β = 100). В чем же ошибка?

Дело в том, что правило 4 действует лишь в том случае, если соблюдено правило 1; если ток коллектора достиг 100 мА, то падение напряжения на лампе составляет 10 В. Для того чтобы ток был еще больше, нужно чтобы потенциал коллектора был меньше потенциала земли. Но транзистор не может перейти в такое состояние. Когда потенциал коллектора приближается к потенциалу земли, транзистор переходит в режим насыщения (типичные значения напряжения насыщения лежат в диапазоне 0,05‑0,2 В, см. приложение Ж) и изменение потенциала коллектора прекращается. В нашем случае лампа загорается, когда падение напряжения на ней составляет 10 В. Если на базу подается избыточный сигнал (мы использовали ток 9,4 мА, хотя достаточно было бы иметь 1,0 мА), то схема не тратит этот избыток; в нашем случае это очень выгодно, так как через лампу протекает большой ток, когда она находится в холодном состоянии (сопротивление лампы в холодном состоянии в 5‑10 раз меньше, чем при протекании рабочего тока). Кроме того, при небольших напряжениях между коллектором и базой уменьшается коэффициент β, а значит, для того чтобы перевести транзистор в режим насыщения, нужен дополнительный ток базы (см. приложение Ж). Иногда к базе подключают резистор (с сопротивлением, например, 10 кОм), для того чтобы при разомкнутом переключателе потенциал базы наверняка был равен потенциалу земли. Этот резистор не влияет на работу схемы при замкнутом переключателе, так как через него протекает лишь малая доля тока (0,06 мА).

При разработке транзисторных переключателей вам пригодятся следующие рекомендации:

1. Сопротивление резистора в цепи базы лучше брать поменьше, тогда избыточный базовый ток будет больше. Эта рекомендация особенно полезна для схем, управляющих включением ламп; так как при низком значении UКЭ уменьшается и коэффициент β. О ней следует помнить и при разработке быстродействующих переключателей, так как на очень высоких частотах (порядка мегагерц) проявляются емкостные эффекты и уменьшается значение коэффициента β. Для увеличения быстродействия к базовому резистору параллельно подключают конденсатор.

2. Если потенциал нагрузки по какой‑либо причине меньше потенциала земли (например, если на нагрузке действует напряжение переменного тока или она индуктивна), то параллельно коллекторному переходу следует подключить диод (можно также использовать диод, включенный в обратном направлении по отношению к положительному потенциалу питания), тогда цепь коллектор‑база не будет проводить ток при отрицательном напряжении на нагрузке.

3. При использовании индуктивных нагрузок транзистор следует предохранять с помощью диода, подключенного к нагрузке, как показано на рис. 2.4.

 

 

Рис. 2.4. При подключении индуктивной нагрузки следует всегда использовать подавляющий диод.

 

Если переключатель разомкнут, то в отсутствие диода на коллекторе будет действовать большое положительное напряжение, скорее всего превышающее значение напряжения пробоя для цепи коллектор‑эмиттер. Это связано с тем, что индуктивность стремится сохранить ток включенного состояния, протекающий от источника UKK к коллектору (вспомните свойства индуктивностей в разд. 1.31).

Транзисторные переключатели позволяют производить переключение очень быстро, время переключения измеряется обычно долями микросекунд. С их помощью можно переключать несколько схем одним управляющим сигналом. Еще одно достоинство транзисторных переключателей состоит в том, что они дают возможность производить дистанционное «холодное» переключение, при котором на переключатели поступают только управляющие сигналы постоянного тока. (Если «гонять» сами переключаемые мощные сигналы, то при передаче их по кабелям могут возникать емкостные выбросы, а сигналы могут сильно ослабляться).

Транзистор в образе человека. Рис. 2.5 дает представление о некоторых ограничениях, свойственных транзистору.

 

 

Рис. 2.5. «Транзисторный человек» следит за током базы и регулирует выходной реостат для того, чтобы выходной ток был в h21Э больше тока базы.

 

Представим себе, что задача человека на рис. 2.5 состоит в том, чтобы обеспечивать выполнение соотношения IK = h21ЭIБ; при этом он может управлять только переменным резистором. Итак, он может создать короткое замыкание в схеме (режим насыщения), или разомкнуть ее (транзистор в выключенном состоянии), или создать какое‑то промежуточное состояние; он не имеет права использовать батареи, источники тока и т. п. Не следует, однако, думать, что коллектор транзистора на самом деле похож на резистор. Это не так. Человек старается сделать так, чтобы через него все время протекал постоянный неизменный ток (величина этого тока зависит от приложенного к базе напряжения).

Следует помнить, что в любой заданный момент времени транзистор может:

а) быть в режиме отсечки, т. е. выключиться (отсутствует ток коллектора);

б) находиться в активном режиме (небольшой ток коллектора, напряжение на коллекторе выше, чем на эмиттере);

в) перейти в режим насыщения (напряжение на коллекторе приблизительно равно напряжению на эмиттере).

Более подробно режим насыщения транзистора описан в приложении Ж.

 

 

Эмиттерный повторитель

 

На рис. 2.6 показан эмиттерный повторитель. Он назван так потому, что выходной сигнал снимается с эмиттера, напряжение на котором равно напряжению на входе (на базе) минус падение напряжения на диоде (на переходе база‑эмиттер): UЭ = UБ – 0,6 В. Выходной сигнал по форме повторяет входной, но уровень его напряжения на 0,6–0,7 В ниже. Для приведенной схемы входное напряжение Uвх должно составлять по крайней мере 0,6 В, иначе выходное напряжение будет равно потенциалу земли. Если к эмиттерному резистору подключить источник отрицательного напряжения, то входной сигнал может быть отрицательным.

 

 

Рис. 2.6. Эмиттерный повторитель.

 

Обратите внимание, что в эмиттерном повторителе отсутствует резистор в коллекторной цепи.

На первый взгляд эта схема может показаться бесполезной, но дело в том, что ее входной импеданс значительно больше, чем выходной. Из этого следует, что источник входного сигнала будет отдавать меньшую мощность, если нагрузку подключить к нему не непосредственно, а через эмиттерный повторитель.

Поэтому обладающий внутренним импедансом источник (имеется в виду его эквивалентная схема) может через повторитель работать на нагрузку, которая обладает сравнимым или даже более низким импедансом, без потери амплитуды сигнала (эта потеря неизбежна при прямом включении из‑за эффекта делителя напряжения). Иными словами, эмиттерный повторитель обеспечивает усиление по току, хотя и не дает усиления по напряжению. Он также обеспечивает усиление по мощности. Как видите, усиление по напряжению – это еще не все!

Импеданс источника и нагрузки. Последнее замечание очень важно, поэтому задержим на нем свое внимание, прежде чем приступить к вычислениям, связанным со свойствами эмиттерных повторителей. При анализе электронных схем всегда стремятся связать выходную величину с какой‑либо входной, как например на рис. 2.7.

 

 

Рис. 2.7. Представим «нагрузку» схемы как делитель напряжения.

 

В качестве источника сигнала может выступать выход усилительного каскада (с эквивалентным последовательным импедансом Z вых), к которому подключен еще один каскад или нагрузка (обладающая входным импедансом Z вх). Вообще говоря, нагрузочный эффект следующего каскада проявляется в ослаблении сигнала, о чем шла речь ранее в разд. 1.05. В связи с этим обычно стремятся к тому, чтобы выполнялось условие Z вых << Z вх  (практическое правило рекомендует использовать коэффициент 10, что на самом деле весьма удобно).

В некоторых случаях вполне можно пренебречь этим общим требованием для обеспечения стабильности источника по отношению к нагрузке. В частности, если нагрузка подключена всегда (например, входит в состав схемы) и если она представляет собой известную и постоянную величину Z вх, то нет ничего опасного в том, что она «нагружает» источник. Тем не менее, хуже не будет, если уровень сигнала не изменяется при подключении нагрузки. Кроме того, если Z вх  изменяется при изменении уровня сигнала, то стабильный источник (Z вых << Z вх) обеспечивает линейность, а делитель напряжения дает искажение линейной зависимости.

Наконец, в двух случаях условие Z вых << Z вх  соблюдать просто нельзя: в радиочастотных схемах импедансы обычно выравнивают (Z вых = Z вх) по причине, которую мы объясним в гл. 14.

Второе исключение относится к случаю, когда передаваемым сигналом является не напряжение, а ток. В этом случае ситуация меняется на противоположную, и нужно стремиться к выполнению условия Z вх << Z вых (для источника тока Z вых =

).

Входной импеданс и импеданс эмиттерного повторителя. Итак, эмиттерный повторитель обладает способностью согласовывать импедансы источников сигналов и нагрузок. В этом и состоит его назначение.

Давайте подсчитаем входной и выходной импеданс эмиттерного повторителя. Предположим, что в приведенной схеме в качестве нагрузки выступает резистор R (на практике иногда так и бывает, в других случаях нагрузку подключают параллельно резистору R, но при параллельном соединении преобладает сопротивление R). Пусть напряжение на базе изменилось на величину ΔUБ; соответствующее напряжение на эмиттере составит ΔUЭ = ΔUБ. Определим изменение тока эмиттера: ΔUэ = ΔUб / R, равное ΔIб = [1/(h21Э + 1)] ΔIэ = ΔUб / R (h21э + 1) (с учетом того, что Iэ = Iк + Iб). Входное сопротивление схемы равно ΔUб / ΔIэ, следовательно,

rвх = (h21э + 1) R.

Коэффициент β  (h21э) обычно имеет значение около 100, поэтому подключение нагрузки с небольшим импедансом приводит к тому, что импеданс со стороны базы становится очень большим; с такой нагрузкой схеме легко работать.

В выполненном только что преобразовании, как и в гл. 1, мы использовали для обозначения некоторых величин строчные буквы, например h21э, тем самым мы указали, что имеем дело с приращениями (малыми сигналами). Чаще всего нас интересует изменение напряжения (или тока) в схеме, а не постоянные значения (или значения по постоянному току) этих величин. Очень часто эти изменения малых сигналов и представляют собой реальный сигнал, например в усилителе звуковых частот, который имеет устойчивое «смещение» по постоянному току (см. разд. 2.05). Различие между коэффициентом усиления по постоянному току (h21э) и коэффициентом усиления по току для малого сигнала h21Э не всегда очевидно, и для того, и для другого случая используют понятие коэффициента усиления β.

Если учесть, что h21Э ~= h21э (за исключением очень высоких частот) и в большинстве случаев интерес представляет не точное, а приблизительное значение этого коэффициента, то использование коэффициента β вполне допустимо. В полученном соотношении фигурируют активные сопротивления, однако его можно обобщить и распространить на комплексные импедансы, если переменные ΔUб,ΔIэ и др. заменить их комплексными представлениями. В результате получим правило преобразования импедансов для эмиттерного повторителя:

Z вх = (h21э + 1) Z нагр.

Проделав аналогичные преобразования, найдем выходной импеданс эмиттерного повторителя Z вых (импеданс со стороны эмиттера) при использовании источника сигнала с внутренним импедансом Z ист:

Z вых= Z ист/(h21э + 1).

Строго говоря, в выходной импеданс схемы надо включить и сопротивление параллельного резистора R, но Z   вых (импеданс со стороны эмиттера) играет основную роль.

Упражнение 2.1. Покажите, что приведенное выше соотношение справедливо. Подсказка: найдите изменение выходного тока при фиксированном напряжении источника и заданном изменении выходного напряжения. Учтите, что напряжение источника подается на базу через его последовательно включенное внутреннее сопротивление.

 

Благодаря таким полезным свойствам эмиттерные повторители находят широкое практическое применение, например при создании внутри схем (или на их выходе) источников сигналов с низким импедансом, при получении стабильных эталонных напряжений на основе эталонных источников с высоким импедансом (сформированных, скажем, с помощью делителей напряжения) и для изоляции источников сигналов от влияния последующих каскадов.

Упражнение 2.2. На основе эмиттерного повторителя, к базе которого подключен делитель напряжения, создайте схему источника напряжения +5 В при условии, что используется стабилизированный источник напряжения питания +15 В. Ток нагрузки (максимальный) равен 25 мА. Сопротивление резисторов следует выбрать так, чтобы при подключении полной нагрузки напряжение на выходе изменялось не более чем на 5 %.

 

Некоторые замечания по поводу эмиттерных повторителей. 1. Отметим (разд. 2.01, правило 4), что транзистор n‑р‑n ‑типа в эмиттерном повторителе может только отдавать ток. Например, для схемы, показанной на рис. 2.8, выходное напряжение в положительной полуплоскости изменяется в пределах напряжения насыщения транзистора Uкк (что составляет +9,9 В), в отрицательной полуплоскости оно ограничено значением –5 В. Это связано с тем, что при увеличении отрицательного напряжения на входе транзистор в определенный момент просто выключается, напряжение на входе составляет при этом –4,4 В, а не выходе –5 В.

 

 

Рис. 2.8. Из эмиттерного повторителя n‑р‑n ‑типа может вытекать большой ток, который будет протекать через транзистор, втекать же может ограниченное количество тока и лишь через эмиттерный резистор.

 

Дальнейшее увеличение отрицательного напряжения на входе приводит лишь к обратному смещению перехода база‑эмиттер, но на выходе это никак не проявляется. Выходной сигнал для входного синусоидального напряжения с амплитудой 10 В показан на рис. 2.9.

 

 

Рис. 2.9. Эмиттерный повторитель n‑р‑n ‑типа как схема формирования асимметричного токового сигнала.

 

Можно также рассматривать поведение эмиттерного повторителя, исходя из того, что он обладает небольшим выходным импедансом для малого сигнала (динамический импеданс). Его выходной импеданс для большого сигнала может быть значительно больше (равен RЭ). Изменение импеданса от первого значения ко второму происходит в тот момент, когда транзистор выходит из активного режима (в нашем примере при напряжении на выходе –5 В). Иначе говоря, небольшой выходной импеданс для малого сигнала не означает, еще, что схема может создавать большой сигнал на низкоомной нагрузке. Если схема имеет небольшой выходной импеданс для малого сигнала, то из этого не следует, что она обладает способностью передавать в нагрузку большой ток.

Для того чтобы преодолеть ограничение, присущее схеме эмиттерного повторителя, можно, например, в эмиттерной цепи использовать резистор с меньшим сопротивлением (тогда на резисторе и транзисторе будет рассеиваться большая мощность), или использовать двухтактную схему, в которой два транзистора (n‑р‑n ‑типа и р‑n‑р ‑типа) взаимно дополняют друг друга (разд. 2.15).

Проблемы такого рода возникают также в тех случаях, когда нагрузка эмиттерного повторителя имеет внутри собственный источник напряжения или тока. Примером такой схемы служит стабилизированный источник питания (на выходе которого стоит обычно эмиттерный повторитель), работающий на схему, содержащую собственный источник питания.

2. Не забывайте, что напряжение пробоя перехода база‑эмиттер для кремниевых транзисторов невелико и часто составляет всего 6 В. Входные сигналы, имеющие достаточно большую амплитуду для того, чтобы вывести транзистор из состояния проводимости, могут вызвать пробой перехода (и последующее уменьшение значения коэффициента h21э)· Для предохранения от пробоя можно использовать диод (рис. 2.10).

 

 

Рис. 2.10. Диод предохраняет переход база‑эмиттер от пробоя.

 

3. Коэффициент усиления по напряжению для эмиттерного повторителя имеет значение чуть меньше 1,0, так как падение напряжения на переходе база‑эмиттер фактически не является постоянным, а немного зависит от коллекторного тока. Далее в этой главе мы вернемся к этому вопросу, когда будем рассматривать уравнение Эберса‑Молла.

 

 





Поделиться с друзьями:


Дата добавления: 2018-11-11; Мы поможем в написании ваших работ!; просмотров: 505 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2312 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.