Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнение радиоактивного распада. Период полураспада. Активность.

     Радиоактивный распад нестабильного ядра – событие случайное, не зависящее от состояния, в котором находятся другие нестабильные ядра. Если нестабильное ядро длительное время не распадалось, то это вовсе не означает, что ему «уже пора»: долгое ненаступление распада не приближает и не отдаляет во времени предстоящий распад. Распад неизбежен, поскольку ядро объективно нестабильное. Вероятность его распада в любую секунду остается величиной постоянной.

     Закономерности подобных процессов устанавливаются по средним показателям большой группы ядер, с применением методов математической статистики.         

     Уравнение радиоактивного распада (Резерфорд, Содди, 1903 год) получено, следуя логике статистического анализа. Эта логика особенно убедительна при записи уравнения распада в дифференциальной форме:

                                                (-dN) / dt = λN                             (8)

Здесь  N – численность нестабильных атомных ядер в момент времени t;

   - dN – изменение (уменьшение) этой численности за бесконечно малый    

              промежуток времени dt наблюдения за распадом;

(-dN) / dt – скорость уменьшения численности нестабильных ядер  (скорость  

              распада в промежутке времени от t  до t+dt);

         λ – постоянная  распада –  константа,  своя   для  каждого  вида             

              радиоактивных атомов.

         

     Следовательно, уравнение радиоактивного распада (8) можно сформулировать следующим образом: скорость радиоактивного распада пропорциональна численности еще не распавшихся ядер.

     Интегрирование дифференциального уравнения (8) приводит к уравнению радиоактивного распада в интегральной форме:

                                      N = N0 e -l t                        (9)

Здесь N = N(t) – численность еще не распавшихся ядер как функция времени t;    

N0 – численность нераспавшихся ядер в начальный момент времени (при t = 0);

        e – основание натуральных логарифмов.

 

График уравнения (9) представлен на рис. 9:

 

                    

                  Рис. 9. График уравнения радиоактивного распада.

Период полураспада – это промежуток времени, в течение которого число нераспавшихся ядер уменьшается в два раза, от N0 до ½N0. Этот показатель связан с постоянной распада следующим образом:

                                                                                       (10)

Постоянная распада λ является важной характеристикой радиоактивных ядер: она равна вероятности распада отдельного ядра данного вида за единицу времени. Какая именно единица времени: секунда, минута, или год – будет зависеть от того, в каких единицах времени подставляется в формулу (10) период полураспада Т1/2.

Допустимо и другое толкование: постоянная распада λ равна доле от численности атомных ядер данного вида, распадающихся в единицу времени.

Диапазон значений периода полураспада природных радиоактивных изотопов необычайно широк: от 1,39‧1010 лет для тория 90Th234 до 3,04·10-7 секунды для полония Po212.

 

Радиоактивные изотопы с периодом полураспада, измеряемые в секундах, минутах, часах и в сутках – это короткоживущие изотопы. Изотопы с периодом полураспада, измеряемым в годах, тысячелетиях, и т.п., -это долгоживущие изотопы.

В медицинской практике нашли применение и те, и другие. Если радиоактивный изотоп вводится в организм, то крайне желательно, чтобы период его полураспада был невелик. Например, хорош изотоп золота 79Au198 с периодом полураспада Т1/2 = 2,7 суток, а изотоп натрия 11Na24 – еще лучше, у него Т1/2=15 часов. Если же пациент подвергается воздействию радиоактивных излучений от внешнего источника, то такой источник удобнее иметь с большим периодом полураспада. Таков, к примеру, изотоп кобальта 27Co60 с периодом полураспада Т1/2 = 5,26 лет. Он излучает b--частицы с энергией 0,31 МэВ и g-кванты 1,33 МэВ и 1,17 МэВ. Кобальтовая пушка – источник g-излучения, применяемый в лучевой терапии.

 

Активность радиоактивного препарата - это число нестабильных атомов этого препарата, распадающихся за одну секунду. В системе СИ принята единица активности беккерель (в честь Антуана Беккереля, одного из первых исследователей радиоактивности):

       1 Бк = 1    = 1 1/c                

Широко применяется внесистемная единица активности – Кюри:

       1 Ки = 3,7×1010 Бк = 3,7×1010 1/c

1Ки – очень большая величина. В медицинской практике используют препараты с активностью в милли- и микрокюри: 1 мКи = 10-3 Ки; 1 мкКи = 10-6 Ки.

Активность, по определению, является показателем скорости распада (число распадов в единицу времени), в то время как в уравнении (9)   N – это численность еще не распавшихся ядер. Взяв производную N/ = dN/dt                         от функции (9), мы получаем уравнение, описывающее активность препарата как функцию времени:

                                                                                                        (11)

Знак «минус» в этом выражении указывает на то, что функция (9) является убывающей, а скорость dN/dt этого убывания уменьшается по экспоненциальному закону, как и численность N в уравнении (9).

 



<== предыдущая лекция | следующая лекция ==>
Применение рентгеновского излучения в диагностике. | Применение ионизирующих излучений в лучевой терапии.
Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 355 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2370 - | 2320 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.